This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of lower sums is a set of extended reals. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itg2val.1 | |- L = { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } |
|
| Assertion | itg2lcl | |- L C_ RR* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2val.1 | |- L = { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } |
|
| 2 | itg1cl | |- ( g e. dom S.1 -> ( S.1 ` g ) e. RR ) |
|
| 3 | 2 | rexrd | |- ( g e. dom S.1 -> ( S.1 ` g ) e. RR* ) |
| 4 | simpr | |- ( ( g oR <_ F /\ x = ( S.1 ` g ) ) -> x = ( S.1 ` g ) ) |
|
| 5 | 4 | eleq1d | |- ( ( g oR <_ F /\ x = ( S.1 ` g ) ) -> ( x e. RR* <-> ( S.1 ` g ) e. RR* ) ) |
| 6 | 3 5 | syl5ibrcom | |- ( g e. dom S.1 -> ( ( g oR <_ F /\ x = ( S.1 ` g ) ) -> x e. RR* ) ) |
| 7 | 6 | rexlimiv | |- ( E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) -> x e. RR* ) |
| 8 | 7 | abssi | |- { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } C_ RR* |
| 9 | 1 8 | eqsstri | |- L C_ RR* |