This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exhibit a function relation at a point. (Contributed by Mario Carneiro, 28-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | offval.1 | |- ( ph -> F Fn A ) |
|
| offval.2 | |- ( ph -> G Fn B ) |
||
| offval.3 | |- ( ph -> A e. V ) |
||
| offval.4 | |- ( ph -> B e. W ) |
||
| offval.5 | |- ( A i^i B ) = S |
||
| ofval.6 | |- ( ( ph /\ X e. A ) -> ( F ` X ) = C ) |
||
| ofval.7 | |- ( ( ph /\ X e. B ) -> ( G ` X ) = D ) |
||
| Assertion | ofrval | |- ( ( ph /\ F oR R G /\ X e. S ) -> C R D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval.1 | |- ( ph -> F Fn A ) |
|
| 2 | offval.2 | |- ( ph -> G Fn B ) |
|
| 3 | offval.3 | |- ( ph -> A e. V ) |
|
| 4 | offval.4 | |- ( ph -> B e. W ) |
|
| 5 | offval.5 | |- ( A i^i B ) = S |
|
| 6 | ofval.6 | |- ( ( ph /\ X e. A ) -> ( F ` X ) = C ) |
|
| 7 | ofval.7 | |- ( ( ph /\ X e. B ) -> ( G ` X ) = D ) |
|
| 8 | eqidd | |- ( ( ph /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
|
| 9 | eqidd | |- ( ( ph /\ x e. B ) -> ( G ` x ) = ( G ` x ) ) |
|
| 10 | 1 2 3 4 5 8 9 | ofrfval | |- ( ph -> ( F oR R G <-> A. x e. S ( F ` x ) R ( G ` x ) ) ) |
| 11 | 10 | biimpa | |- ( ( ph /\ F oR R G ) -> A. x e. S ( F ` x ) R ( G ` x ) ) |
| 12 | fveq2 | |- ( x = X -> ( F ` x ) = ( F ` X ) ) |
|
| 13 | fveq2 | |- ( x = X -> ( G ` x ) = ( G ` X ) ) |
|
| 14 | 12 13 | breq12d | |- ( x = X -> ( ( F ` x ) R ( G ` x ) <-> ( F ` X ) R ( G ` X ) ) ) |
| 15 | 14 | rspccv | |- ( A. x e. S ( F ` x ) R ( G ` x ) -> ( X e. S -> ( F ` X ) R ( G ` X ) ) ) |
| 16 | 11 15 | syl | |- ( ( ph /\ F oR R G ) -> ( X e. S -> ( F ` X ) R ( G ` X ) ) ) |
| 17 | 16 | 3impia | |- ( ( ph /\ F oR R G /\ X e. S ) -> ( F ` X ) R ( G ` X ) ) |
| 18 | simp1 | |- ( ( ph /\ F oR R G /\ X e. S ) -> ph ) |
|
| 19 | inss1 | |- ( A i^i B ) C_ A |
|
| 20 | 5 19 | eqsstrri | |- S C_ A |
| 21 | simp3 | |- ( ( ph /\ F oR R G /\ X e. S ) -> X e. S ) |
|
| 22 | 20 21 | sselid | |- ( ( ph /\ F oR R G /\ X e. S ) -> X e. A ) |
| 23 | 18 22 6 | syl2anc | |- ( ( ph /\ F oR R G /\ X e. S ) -> ( F ` X ) = C ) |
| 24 | inss2 | |- ( A i^i B ) C_ B |
|
| 25 | 5 24 | eqsstrri | |- S C_ B |
| 26 | 25 21 | sselid | |- ( ( ph /\ F oR R G /\ X e. S ) -> X e. B ) |
| 27 | 18 26 7 | syl2anc | |- ( ( ph /\ F oR R G /\ X e. S ) -> ( G ` X ) = D ) |
| 28 | 17 23 27 | 3brtr3d | |- ( ( ph /\ F oR R G /\ X e. S ) -> C R D ) |