This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a uniform space, i.e. a base set with an uniform structure and its induced topology. Derived from definition 3 of BourbakiTop1 p. II.4. (Contributed by Thierry Arnoux, 17-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-usp | |- UnifSp = { f | ( ( UnifSt ` f ) e. ( UnifOn ` ( Base ` f ) ) /\ ( TopOpen ` f ) = ( unifTop ` ( UnifSt ` f ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cusp | |- UnifSp |
|
| 1 | vf | |- f |
|
| 2 | cuss | |- UnifSt |
|
| 3 | 1 | cv | |- f |
| 4 | 3 2 | cfv | |- ( UnifSt ` f ) |
| 5 | cust | |- UnifOn |
|
| 6 | cbs | |- Base |
|
| 7 | 3 6 | cfv | |- ( Base ` f ) |
| 8 | 7 5 | cfv | |- ( UnifOn ` ( Base ` f ) ) |
| 9 | 4 8 | wcel | |- ( UnifSt ` f ) e. ( UnifOn ` ( Base ` f ) ) |
| 10 | ctopn | |- TopOpen |
|
| 11 | 3 10 | cfv | |- ( TopOpen ` f ) |
| 12 | cutop | |- unifTop |
|
| 13 | 4 12 | cfv | |- ( unifTop ` ( UnifSt ` f ) ) |
| 14 | 11 13 | wceq | |- ( TopOpen ` f ) = ( unifTop ` ( UnifSt ` f ) ) |
| 15 | 9 14 | wa | |- ( ( UnifSt ` f ) e. ( UnifOn ` ( Base ` f ) ) /\ ( TopOpen ` f ) = ( unifTop ` ( UnifSt ` f ) ) ) |
| 16 | 15 1 | cab | |- { f | ( ( UnifSt ` f ) e. ( UnifOn ` ( Base ` f ) ) /\ ( TopOpen ` f ) = ( unifTop ` ( UnifSt ` f ) ) ) } |
| 17 | 0 16 | wceq | |- UnifSp = { f | ( ( UnifSt ` f ) e. ( UnifOn ` ( Base ` f ) ) /\ ( TopOpen ` f ) = ( unifTop ` ( UnifSt ` f ) ) ) } |