This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of units in a ring, that is, all elements with a left and right multiplicative inverse. (Contributed by Mario Carneiro, 1-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-unit | |- Unit = ( w e. _V |-> ( `' ( ( ||r ` w ) i^i ( ||r ` ( oppR ` w ) ) ) " { ( 1r ` w ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cui | |- Unit |
|
| 1 | vw | |- w |
|
| 2 | cvv | |- _V |
|
| 3 | cdsr | |- ||r |
|
| 4 | 1 | cv | |- w |
| 5 | 4 3 | cfv | |- ( ||r ` w ) |
| 6 | coppr | |- oppR |
|
| 7 | 4 6 | cfv | |- ( oppR ` w ) |
| 8 | 7 3 | cfv | |- ( ||r ` ( oppR ` w ) ) |
| 9 | 5 8 | cin | |- ( ( ||r ` w ) i^i ( ||r ` ( oppR ` w ) ) ) |
| 10 | 9 | ccnv | |- `' ( ( ||r ` w ) i^i ( ||r ` ( oppR ` w ) ) ) |
| 11 | cur | |- 1r |
|
| 12 | 4 11 | cfv | |- ( 1r ` w ) |
| 13 | 12 | csn | |- { ( 1r ` w ) } |
| 14 | 10 13 | cima | |- ( `' ( ( ||r ` w ) i^i ( ||r ` ( oppR ` w ) ) ) " { ( 1r ` w ) } ) |
| 15 | 1 2 14 | cmpt | |- ( w e. _V |-> ( `' ( ( ||r ` w ) i^i ( ||r ` ( oppR ` w ) ) ) " { ( 1r ` w ) } ) ) |
| 16 | 0 15 | wceq | |- Unit = ( w e. _V |-> ( `' ( ( ||r ` w ) i^i ( ||r ` ( oppR ` w ) ) ) " { ( 1r ` w ) } ) ) |