This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sequence of partial finite sums of a converging infinite series converges to the infinite sum of the series. Note that j must not occur in A . (Contributed by NM, 9-Jan-2006) (Revised by Mario Carneiro, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumclim3.1 | |- Z = ( ZZ>= ` M ) |
|
| isumclim3.2 | |- ( ph -> M e. ZZ ) |
||
| isumclim3.3 | |- ( ph -> F e. dom ~~> ) |
||
| isumclim3.4 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
||
| isumclim3.5 | |- ( ( ph /\ j e. Z ) -> ( F ` j ) = sum_ k e. ( M ... j ) A ) |
||
| Assertion | isumclim3 | |- ( ph -> F ~~> sum_ k e. Z A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumclim3.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | isumclim3.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | isumclim3.3 | |- ( ph -> F e. dom ~~> ) |
|
| 4 | isumclim3.4 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
|
| 5 | isumclim3.5 | |- ( ( ph /\ j e. Z ) -> ( F ` j ) = sum_ k e. ( M ... j ) A ) |
|
| 6 | climdm | |- ( F e. dom ~~> <-> F ~~> ( ~~> ` F ) ) |
|
| 7 | 3 6 | sylib | |- ( ph -> F ~~> ( ~~> ` F ) ) |
| 8 | sumfc | |- sum_ m e. Z ( ( k e. Z |-> A ) ` m ) = sum_ k e. Z A |
|
| 9 | eqidd | |- ( ( ph /\ m e. Z ) -> ( ( k e. Z |-> A ) ` m ) = ( ( k e. Z |-> A ) ` m ) ) |
|
| 10 | 4 | fmpttd | |- ( ph -> ( k e. Z |-> A ) : Z --> CC ) |
| 11 | 10 | ffvelcdmda | |- ( ( ph /\ m e. Z ) -> ( ( k e. Z |-> A ) ` m ) e. CC ) |
| 12 | 1 2 9 11 | isum | |- ( ph -> sum_ m e. Z ( ( k e. Z |-> A ) ` m ) = ( ~~> ` seq M ( + , ( k e. Z |-> A ) ) ) ) |
| 13 | 8 12 | eqtr3id | |- ( ph -> sum_ k e. Z A = ( ~~> ` seq M ( + , ( k e. Z |-> A ) ) ) ) |
| 14 | seqex | |- seq M ( + , ( k e. Z |-> A ) ) e. _V |
|
| 15 | 14 | a1i | |- ( ph -> seq M ( + , ( k e. Z |-> A ) ) e. _V ) |
| 16 | fvres | |- ( m e. ( M ... j ) -> ( ( ( k e. Z |-> A ) |` ( M ... j ) ) ` m ) = ( ( k e. Z |-> A ) ` m ) ) |
|
| 17 | fzssuz | |- ( M ... j ) C_ ( ZZ>= ` M ) |
|
| 18 | 17 1 | sseqtrri | |- ( M ... j ) C_ Z |
| 19 | resmpt | |- ( ( M ... j ) C_ Z -> ( ( k e. Z |-> A ) |` ( M ... j ) ) = ( k e. ( M ... j ) |-> A ) ) |
|
| 20 | 18 19 | ax-mp | |- ( ( k e. Z |-> A ) |` ( M ... j ) ) = ( k e. ( M ... j ) |-> A ) |
| 21 | 20 | fveq1i | |- ( ( ( k e. Z |-> A ) |` ( M ... j ) ) ` m ) = ( ( k e. ( M ... j ) |-> A ) ` m ) |
| 22 | 16 21 | eqtr3di | |- ( m e. ( M ... j ) -> ( ( k e. Z |-> A ) ` m ) = ( ( k e. ( M ... j ) |-> A ) ` m ) ) |
| 23 | 22 | sumeq2i | |- sum_ m e. ( M ... j ) ( ( k e. Z |-> A ) ` m ) = sum_ m e. ( M ... j ) ( ( k e. ( M ... j ) |-> A ) ` m ) |
| 24 | sumfc | |- sum_ m e. ( M ... j ) ( ( k e. ( M ... j ) |-> A ) ` m ) = sum_ k e. ( M ... j ) A |
|
| 25 | 23 24 | eqtri | |- sum_ m e. ( M ... j ) ( ( k e. Z |-> A ) ` m ) = sum_ k e. ( M ... j ) A |
| 26 | eqidd | |- ( ( ( ph /\ j e. Z ) /\ m e. ( M ... j ) ) -> ( ( k e. Z |-> A ) ` m ) = ( ( k e. Z |-> A ) ` m ) ) |
|
| 27 | simpr | |- ( ( ph /\ j e. Z ) -> j e. Z ) |
|
| 28 | 27 1 | eleqtrdi | |- ( ( ph /\ j e. Z ) -> j e. ( ZZ>= ` M ) ) |
| 29 | simpl | |- ( ( ph /\ j e. Z ) -> ph ) |
|
| 30 | elfzuz | |- ( m e. ( M ... j ) -> m e. ( ZZ>= ` M ) ) |
|
| 31 | 30 1 | eleqtrrdi | |- ( m e. ( M ... j ) -> m e. Z ) |
| 32 | 29 31 11 | syl2an | |- ( ( ( ph /\ j e. Z ) /\ m e. ( M ... j ) ) -> ( ( k e. Z |-> A ) ` m ) e. CC ) |
| 33 | 26 28 32 | fsumser | |- ( ( ph /\ j e. Z ) -> sum_ m e. ( M ... j ) ( ( k e. Z |-> A ) ` m ) = ( seq M ( + , ( k e. Z |-> A ) ) ` j ) ) |
| 34 | 25 33 | eqtr3id | |- ( ( ph /\ j e. Z ) -> sum_ k e. ( M ... j ) A = ( seq M ( + , ( k e. Z |-> A ) ) ` j ) ) |
| 35 | 5 34 | eqtr2d | |- ( ( ph /\ j e. Z ) -> ( seq M ( + , ( k e. Z |-> A ) ) ` j ) = ( F ` j ) ) |
| 36 | 1 15 3 2 35 | climeq | |- ( ph -> ( seq M ( + , ( k e. Z |-> A ) ) ~~> x <-> F ~~> x ) ) |
| 37 | 36 | iotabidv | |- ( ph -> ( iota x seq M ( + , ( k e. Z |-> A ) ) ~~> x ) = ( iota x F ~~> x ) ) |
| 38 | df-fv | |- ( ~~> ` seq M ( + , ( k e. Z |-> A ) ) ) = ( iota x seq M ( + , ( k e. Z |-> A ) ) ~~> x ) |
|
| 39 | df-fv | |- ( ~~> ` F ) = ( iota x F ~~> x ) |
|
| 40 | 37 38 39 | 3eqtr4g | |- ( ph -> ( ~~> ` seq M ( + , ( k e. Z |-> A ) ) ) = ( ~~> ` F ) ) |
| 41 | 13 40 | eqtrd | |- ( ph -> sum_ k e. Z A = ( ~~> ` F ) ) |
| 42 | 7 41 | breqtrrd | |- ( ph -> F ~~> sum_ k e. Z A ) |