This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sequence of partial finite sums of a converging infinite series converges to the infinite sum of the series. Note that j must not occur in A . (Contributed by NM, 9-Jan-2006) (Revised by Mario Carneiro, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumclim3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| isumclim3.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| isumclim3.3 | ⊢ ( 𝜑 → 𝐹 ∈ dom ⇝ ) | ||
| isumclim3.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | ||
| isumclim3.5 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) = Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) 𝐴 ) | ||
| Assertion | isumclim3 | ⊢ ( 𝜑 → 𝐹 ⇝ Σ 𝑘 ∈ 𝑍 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumclim3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | isumclim3.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | isumclim3.3 | ⊢ ( 𝜑 → 𝐹 ∈ dom ⇝ ) | |
| 4 | isumclim3.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | |
| 5 | isumclim3.5 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) = Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) 𝐴 ) | |
| 6 | climdm | ⊢ ( 𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) | |
| 7 | 3 6 | sylib | ⊢ ( 𝜑 → 𝐹 ⇝ ( ⇝ ‘ 𝐹 ) ) |
| 8 | sumfc | ⊢ Σ 𝑚 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑘 ∈ 𝑍 𝐴 | |
| 9 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) | |
| 10 | 4 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) : 𝑍 ⟶ ℂ ) |
| 11 | 10 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
| 12 | 1 2 9 11 | isum | ⊢ ( 𝜑 → Σ 𝑚 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ⇝ ‘ seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ) ) |
| 13 | 8 12 | eqtr3id | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘ seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ) ) |
| 14 | seqex | ⊢ seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ∈ V | |
| 15 | 14 | a1i | ⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ∈ V ) |
| 16 | fvres | ⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑗 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑀 ... 𝑗 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) | |
| 17 | fzssuz | ⊢ ( 𝑀 ... 𝑗 ) ⊆ ( ℤ≥ ‘ 𝑀 ) | |
| 18 | 17 1 | sseqtrri | ⊢ ( 𝑀 ... 𝑗 ) ⊆ 𝑍 |
| 19 | resmpt | ⊢ ( ( 𝑀 ... 𝑗 ) ⊆ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑀 ... 𝑗 ) ) = ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ 𝐴 ) ) | |
| 20 | 18 19 | ax-mp | ⊢ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑀 ... 𝑗 ) ) = ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ 𝐴 ) |
| 21 | 20 | fveq1i | ⊢ ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑀 ... 𝑗 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ 𝐴 ) ‘ 𝑚 ) |
| 22 | 16 21 | eqtr3di | ⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑗 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ 𝐴 ) ‘ 𝑚 ) ) |
| 23 | 22 | sumeq2i | ⊢ Σ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ( ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ 𝐴 ) ‘ 𝑚 ) |
| 24 | sumfc | ⊢ Σ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ( ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) 𝐴 | |
| 25 | 23 24 | eqtri | ⊢ Σ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) 𝐴 |
| 26 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) | |
| 27 | simpr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) | |
| 28 | 27 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 29 | simpl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝜑 ) | |
| 30 | elfzuz | ⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑗 ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 31 | 30 1 | eleqtrrdi | ⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑗 ) → 𝑚 ∈ 𝑍 ) |
| 32 | 29 31 11 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
| 33 | 26 28 32 | fsumser | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → Σ 𝑚 ∈ ( 𝑀 ... 𝑗 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ‘ 𝑗 ) ) |
| 34 | 25 33 | eqtr3id | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) 𝐴 = ( seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ‘ 𝑗 ) ) |
| 35 | 5 34 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ‘ 𝑗 ) = ( 𝐹 ‘ 𝑗 ) ) |
| 36 | 1 15 3 2 35 | climeq | ⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ⇝ 𝑥 ↔ 𝐹 ⇝ 𝑥 ) ) |
| 37 | 36 | iotabidv | ⊢ ( 𝜑 → ( ℩ 𝑥 seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ⇝ 𝑥 ) = ( ℩ 𝑥 𝐹 ⇝ 𝑥 ) ) |
| 38 | df-fv | ⊢ ( ⇝ ‘ seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ) = ( ℩ 𝑥 seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ⇝ 𝑥 ) | |
| 39 | df-fv | ⊢ ( ⇝ ‘ 𝐹 ) = ( ℩ 𝑥 𝐹 ⇝ 𝑥 ) | |
| 40 | 37 38 39 | 3eqtr4g | ⊢ ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ) ) = ( ⇝ ‘ 𝐹 ) ) |
| 41 | 13 40 | eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘ 𝐹 ) ) |
| 42 | 7 41 | breqtrrd | ⊢ ( 𝜑 → 𝐹 ⇝ Σ 𝑘 ∈ 𝑍 𝐴 ) |