This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of infinite sums. (Contributed by Mario Carneiro, 18-Aug-2013) (Revised by Mario Carneiro, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumadd.1 | |- Z = ( ZZ>= ` M ) |
|
| isumadd.2 | |- ( ph -> M e. ZZ ) |
||
| isumadd.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
||
| isumadd.4 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
||
| isumadd.5 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) = B ) |
||
| isumadd.6 | |- ( ( ph /\ k e. Z ) -> B e. CC ) |
||
| isumadd.7 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
||
| isumadd.8 | |- ( ph -> seq M ( + , G ) e. dom ~~> ) |
||
| Assertion | isumadd | |- ( ph -> sum_ k e. Z ( A + B ) = ( sum_ k e. Z A + sum_ k e. Z B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumadd.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | isumadd.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | isumadd.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
|
| 4 | isumadd.4 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
|
| 5 | isumadd.5 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) = B ) |
|
| 6 | isumadd.6 | |- ( ( ph /\ k e. Z ) -> B e. CC ) |
|
| 7 | isumadd.7 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
|
| 8 | isumadd.8 | |- ( ph -> seq M ( + , G ) e. dom ~~> ) |
|
| 9 | fveq2 | |- ( m = k -> ( F ` m ) = ( F ` k ) ) |
|
| 10 | fveq2 | |- ( m = k -> ( G ` m ) = ( G ` k ) ) |
|
| 11 | 9 10 | oveq12d | |- ( m = k -> ( ( F ` m ) + ( G ` m ) ) = ( ( F ` k ) + ( G ` k ) ) ) |
| 12 | eqid | |- ( m e. Z |-> ( ( F ` m ) + ( G ` m ) ) ) = ( m e. Z |-> ( ( F ` m ) + ( G ` m ) ) ) |
|
| 13 | ovex | |- ( ( F ` k ) + ( G ` k ) ) e. _V |
|
| 14 | 11 12 13 | fvmpt | |- ( k e. Z -> ( ( m e. Z |-> ( ( F ` m ) + ( G ` m ) ) ) ` k ) = ( ( F ` k ) + ( G ` k ) ) ) |
| 15 | 14 | adantl | |- ( ( ph /\ k e. Z ) -> ( ( m e. Z |-> ( ( F ` m ) + ( G ` m ) ) ) ` k ) = ( ( F ` k ) + ( G ` k ) ) ) |
| 16 | 3 5 | oveq12d | |- ( ( ph /\ k e. Z ) -> ( ( F ` k ) + ( G ` k ) ) = ( A + B ) ) |
| 17 | 15 16 | eqtrd | |- ( ( ph /\ k e. Z ) -> ( ( m e. Z |-> ( ( F ` m ) + ( G ` m ) ) ) ` k ) = ( A + B ) ) |
| 18 | 4 6 | addcld | |- ( ( ph /\ k e. Z ) -> ( A + B ) e. CC ) |
| 19 | 1 2 3 4 7 | isumclim2 | |- ( ph -> seq M ( + , F ) ~~> sum_ k e. Z A ) |
| 20 | seqex | |- seq M ( + , ( m e. Z |-> ( ( F ` m ) + ( G ` m ) ) ) ) e. _V |
|
| 21 | 20 | a1i | |- ( ph -> seq M ( + , ( m e. Z |-> ( ( F ` m ) + ( G ` m ) ) ) ) e. _V ) |
| 22 | 1 2 5 6 8 | isumclim2 | |- ( ph -> seq M ( + , G ) ~~> sum_ k e. Z B ) |
| 23 | 3 4 | eqeltrd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 24 | 1 2 23 | serf | |- ( ph -> seq M ( + , F ) : Z --> CC ) |
| 25 | 24 | ffvelcdmda | |- ( ( ph /\ j e. Z ) -> ( seq M ( + , F ) ` j ) e. CC ) |
| 26 | 5 6 | eqeltrd | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
| 27 | 1 2 26 | serf | |- ( ph -> seq M ( + , G ) : Z --> CC ) |
| 28 | 27 | ffvelcdmda | |- ( ( ph /\ j e. Z ) -> ( seq M ( + , G ) ` j ) e. CC ) |
| 29 | simpr | |- ( ( ph /\ j e. Z ) -> j e. Z ) |
|
| 30 | 29 1 | eleqtrdi | |- ( ( ph /\ j e. Z ) -> j e. ( ZZ>= ` M ) ) |
| 31 | simpll | |- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ph ) |
|
| 32 | elfzuz | |- ( k e. ( M ... j ) -> k e. ( ZZ>= ` M ) ) |
|
| 33 | 32 1 | eleqtrrdi | |- ( k e. ( M ... j ) -> k e. Z ) |
| 34 | 33 | adantl | |- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> k e. Z ) |
| 35 | 31 34 23 | syl2anc | |- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) |
| 36 | 31 34 26 | syl2anc | |- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( G ` k ) e. CC ) |
| 37 | 34 14 | syl | |- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( ( m e. Z |-> ( ( F ` m ) + ( G ` m ) ) ) ` k ) = ( ( F ` k ) + ( G ` k ) ) ) |
| 38 | 30 35 36 37 | seradd | |- ( ( ph /\ j e. Z ) -> ( seq M ( + , ( m e. Z |-> ( ( F ` m ) + ( G ` m ) ) ) ) ` j ) = ( ( seq M ( + , F ) ` j ) + ( seq M ( + , G ) ` j ) ) ) |
| 39 | 1 2 19 21 22 25 28 38 | climadd | |- ( ph -> seq M ( + , ( m e. Z |-> ( ( F ` m ) + ( G ` m ) ) ) ) ~~> ( sum_ k e. Z A + sum_ k e. Z B ) ) |
| 40 | 1 2 17 18 39 | isumclim | |- ( ph -> sum_ k e. Z ( A + B ) = ( sum_ k e. Z A + sum_ k e. Z B ) ) |