This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of a hypergraph to be a subgraph. (Contributed by AV, 19-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrissubgr.v | |- V = ( Vtx ` S ) |
|
| uhgrissubgr.a | |- A = ( Vtx ` G ) |
||
| uhgrissubgr.i | |- I = ( iEdg ` S ) |
||
| uhgrissubgr.b | |- B = ( iEdg ` G ) |
||
| Assertion | uhgrissubgr | |- ( ( G e. W /\ Fun B /\ S e. UHGraph ) -> ( S SubGraph G <-> ( V C_ A /\ I C_ B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrissubgr.v | |- V = ( Vtx ` S ) |
|
| 2 | uhgrissubgr.a | |- A = ( Vtx ` G ) |
|
| 3 | uhgrissubgr.i | |- I = ( iEdg ` S ) |
|
| 4 | uhgrissubgr.b | |- B = ( iEdg ` G ) |
|
| 5 | eqid | |- ( Edg ` S ) = ( Edg ` S ) |
|
| 6 | 1 2 3 4 5 | subgrprop2 | |- ( S SubGraph G -> ( V C_ A /\ I C_ B /\ ( Edg ` S ) C_ ~P V ) ) |
| 7 | 3simpa | |- ( ( V C_ A /\ I C_ B /\ ( Edg ` S ) C_ ~P V ) -> ( V C_ A /\ I C_ B ) ) |
|
| 8 | 6 7 | syl | |- ( S SubGraph G -> ( V C_ A /\ I C_ B ) ) |
| 9 | simprl | |- ( ( ( G e. W /\ Fun B /\ S e. UHGraph ) /\ ( V C_ A /\ I C_ B ) ) -> V C_ A ) |
|
| 10 | simp2 | |- ( ( G e. W /\ Fun B /\ S e. UHGraph ) -> Fun B ) |
|
| 11 | simpr | |- ( ( V C_ A /\ I C_ B ) -> I C_ B ) |
|
| 12 | funssres | |- ( ( Fun B /\ I C_ B ) -> ( B |` dom I ) = I ) |
|
| 13 | 10 11 12 | syl2an | |- ( ( ( G e. W /\ Fun B /\ S e. UHGraph ) /\ ( V C_ A /\ I C_ B ) ) -> ( B |` dom I ) = I ) |
| 14 | 13 | eqcomd | |- ( ( ( G e. W /\ Fun B /\ S e. UHGraph ) /\ ( V C_ A /\ I C_ B ) ) -> I = ( B |` dom I ) ) |
| 15 | edguhgr | |- ( ( S e. UHGraph /\ e e. ( Edg ` S ) ) -> e e. ~P ( Vtx ` S ) ) |
|
| 16 | 15 | ex | |- ( S e. UHGraph -> ( e e. ( Edg ` S ) -> e e. ~P ( Vtx ` S ) ) ) |
| 17 | 1 | pweqi | |- ~P V = ~P ( Vtx ` S ) |
| 18 | 17 | eleq2i | |- ( e e. ~P V <-> e e. ~P ( Vtx ` S ) ) |
| 19 | 16 18 | imbitrrdi | |- ( S e. UHGraph -> ( e e. ( Edg ` S ) -> e e. ~P V ) ) |
| 20 | 19 | ssrdv | |- ( S e. UHGraph -> ( Edg ` S ) C_ ~P V ) |
| 21 | 20 | 3ad2ant3 | |- ( ( G e. W /\ Fun B /\ S e. UHGraph ) -> ( Edg ` S ) C_ ~P V ) |
| 22 | 21 | adantr | |- ( ( ( G e. W /\ Fun B /\ S e. UHGraph ) /\ ( V C_ A /\ I C_ B ) ) -> ( Edg ` S ) C_ ~P V ) |
| 23 | 1 2 3 4 5 | issubgr | |- ( ( G e. W /\ S e. UHGraph ) -> ( S SubGraph G <-> ( V C_ A /\ I = ( B |` dom I ) /\ ( Edg ` S ) C_ ~P V ) ) ) |
| 24 | 23 | 3adant2 | |- ( ( G e. W /\ Fun B /\ S e. UHGraph ) -> ( S SubGraph G <-> ( V C_ A /\ I = ( B |` dom I ) /\ ( Edg ` S ) C_ ~P V ) ) ) |
| 25 | 24 | adantr | |- ( ( ( G e. W /\ Fun B /\ S e. UHGraph ) /\ ( V C_ A /\ I C_ B ) ) -> ( S SubGraph G <-> ( V C_ A /\ I = ( B |` dom I ) /\ ( Edg ` S ) C_ ~P V ) ) ) |
| 26 | 9 14 22 25 | mpbir3and | |- ( ( ( G e. W /\ Fun B /\ S e. UHGraph ) /\ ( V C_ A /\ I C_ B ) ) -> S SubGraph G ) |
| 27 | 26 | ex | |- ( ( G e. W /\ Fun B /\ S e. UHGraph ) -> ( ( V C_ A /\ I C_ B ) -> S SubGraph G ) ) |
| 28 | 8 27 | impbid2 | |- ( ( G e. W /\ Fun B /\ S e. UHGraph ) -> ( S SubGraph G <-> ( V C_ A /\ I C_ B ) ) ) |