This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a two-parameter class is not empty, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elmpocl.f | |- F = ( x e. A , y e. B |-> C ) |
|
| Assertion | elmpocl | |- ( X e. ( S F T ) -> ( S e. A /\ T e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmpocl.f | |- F = ( x e. A , y e. B |-> C ) |
|
| 2 | df-mpo | |- ( x e. A , y e. B |-> C ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
|
| 3 | 1 2 | eqtri | |- F = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
| 4 | 3 | dmeqi | |- dom F = dom { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
| 5 | dmoprabss | |- dom { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } C_ ( A X. B ) |
|
| 6 | 4 5 | eqsstri | |- dom F C_ ( A X. B ) |
| 7 | elfvdm | |- ( X e. ( F ` <. S , T >. ) -> <. S , T >. e. dom F ) |
|
| 8 | df-ov | |- ( S F T ) = ( F ` <. S , T >. ) |
|
| 9 | 7 8 | eleq2s | |- ( X e. ( S F T ) -> <. S , T >. e. dom F ) |
| 10 | 6 9 | sselid | |- ( X e. ( S F T ) -> <. S , T >. e. ( A X. B ) ) |
| 11 | opelxp | |- ( <. S , T >. e. ( A X. B ) <-> ( S e. A /\ T e. B ) ) |
|
| 12 | 10 11 | sylib | |- ( X e. ( S F T ) -> ( S e. A /\ T e. B ) ) |