This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of Sylow p-subgroups of a group g . A Sylow p-subgroup is a p-group that is not a subgroup of any other p-groups in g . (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-slw | |- pSyl = ( p e. Prime , g e. Grp |-> { h e. ( SubGrp ` g ) | A. k e. ( SubGrp ` g ) ( ( h C_ k /\ p pGrp ( g |`s k ) ) <-> h = k ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cslw | |- pSyl |
|
| 1 | vp | |- p |
|
| 2 | cprime | |- Prime |
|
| 3 | vg | |- g |
|
| 4 | cgrp | |- Grp |
|
| 5 | vh | |- h |
|
| 6 | csubg | |- SubGrp |
|
| 7 | 3 | cv | |- g |
| 8 | 7 6 | cfv | |- ( SubGrp ` g ) |
| 9 | vk | |- k |
|
| 10 | 5 | cv | |- h |
| 11 | 9 | cv | |- k |
| 12 | 10 11 | wss | |- h C_ k |
| 13 | 1 | cv | |- p |
| 14 | cpgp | |- pGrp |
|
| 15 | cress | |- |`s |
|
| 16 | 7 11 15 | co | |- ( g |`s k ) |
| 17 | 13 16 14 | wbr | |- p pGrp ( g |`s k ) |
| 18 | 12 17 | wa | |- ( h C_ k /\ p pGrp ( g |`s k ) ) |
| 19 | 10 11 | wceq | |- h = k |
| 20 | 18 19 | wb | |- ( ( h C_ k /\ p pGrp ( g |`s k ) ) <-> h = k ) |
| 21 | 20 9 8 | wral | |- A. k e. ( SubGrp ` g ) ( ( h C_ k /\ p pGrp ( g |`s k ) ) <-> h = k ) |
| 22 | 21 5 8 | crab | |- { h e. ( SubGrp ` g ) | A. k e. ( SubGrp ` g ) ( ( h C_ k /\ p pGrp ( g |`s k ) ) <-> h = k ) } |
| 23 | 1 3 2 4 22 | cmpo | |- ( p e. Prime , g e. Grp |-> { h e. ( SubGrp ` g ) | A. k e. ( SubGrp ` g ) ( ( h C_ k /\ p pGrp ( g |`s k ) ) <-> h = k ) } ) |
| 24 | 0 23 | wceq | |- pSyl = ( p e. Prime , g e. Grp |-> { h e. ( SubGrp ` g ) | A. k e. ( SubGrp ` g ) ( ( h C_ k /\ p pGrp ( g |`s k ) ) <-> h = k ) } ) |