This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define class of all ordered rings. An ordered ring is a ring with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-orng | |- oRing = { r e. ( Ring i^i oGrp ) | [. ( Base ` r ) / v ]. [. ( 0g ` r ) / z ]. [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | corng | |- oRing |
|
| 1 | vr | |- r |
|
| 2 | crg | |- Ring |
|
| 3 | cogrp | |- oGrp |
|
| 4 | 2 3 | cin | |- ( Ring i^i oGrp ) |
| 5 | cbs | |- Base |
|
| 6 | 1 | cv | |- r |
| 7 | 6 5 | cfv | |- ( Base ` r ) |
| 8 | vv | |- v |
|
| 9 | c0g | |- 0g |
|
| 10 | 6 9 | cfv | |- ( 0g ` r ) |
| 11 | vz | |- z |
|
| 12 | cmulr | |- .r |
|
| 13 | 6 12 | cfv | |- ( .r ` r ) |
| 14 | vt | |- t |
|
| 15 | cple | |- le |
|
| 16 | 6 15 | cfv | |- ( le ` r ) |
| 17 | vl | |- l |
|
| 18 | va | |- a |
|
| 19 | 8 | cv | |- v |
| 20 | vb | |- b |
|
| 21 | 11 | cv | |- z |
| 22 | 17 | cv | |- l |
| 23 | 18 | cv | |- a |
| 24 | 21 23 22 | wbr | |- z l a |
| 25 | 20 | cv | |- b |
| 26 | 21 25 22 | wbr | |- z l b |
| 27 | 24 26 | wa | |- ( z l a /\ z l b ) |
| 28 | 14 | cv | |- t |
| 29 | 23 25 28 | co | |- ( a t b ) |
| 30 | 21 29 22 | wbr | |- z l ( a t b ) |
| 31 | 27 30 | wi | |- ( ( z l a /\ z l b ) -> z l ( a t b ) ) |
| 32 | 31 20 19 | wral | |- A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) |
| 33 | 32 18 19 | wral | |- A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) |
| 34 | 33 17 16 | wsbc | |- [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) |
| 35 | 34 14 13 | wsbc | |- [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) |
| 36 | 35 11 10 | wsbc | |- [. ( 0g ` r ) / z ]. [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) |
| 37 | 36 8 7 | wsbc | |- [. ( Base ` r ) / v ]. [. ( 0g ` r ) / z ]. [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) |
| 38 | 37 1 4 | crab | |- { r e. ( Ring i^i oGrp ) | [. ( Base ` r ) / v ]. [. ( 0g ` r ) / z ]. [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) } |
| 39 | 0 38 | wceq | |- oRing = { r e. ( Ring i^i oGrp ) | [. ( Base ` r ) / v ]. [. ( 0g ` r ) / z ]. [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) } |