This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of orthoposets, which are bounded posets with an orthocomplementation operation. Note that ( Base p ) e. dom ( lub p ) means there is an upper bound 1. , and similarly for the 0. element. (Contributed by NM, 20-Oct-2011) (Revised by NM, 13-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-oposet | |- OP = { p e. Poset | ( ( ( Base ` p ) e. dom ( lub ` p ) /\ ( Base ` p ) e. dom ( glb ` p ) ) /\ E. o ( o = ( oc ` p ) /\ A. a e. ( Base ` p ) A. b e. ( Base ` p ) ( ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) /\ ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) /\ ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cops | |- OP |
|
| 1 | vp | |- p |
|
| 2 | cpo | |- Poset |
|
| 3 | cbs | |- Base |
|
| 4 | 1 | cv | |- p |
| 5 | 4 3 | cfv | |- ( Base ` p ) |
| 6 | club | |- lub |
|
| 7 | 4 6 | cfv | |- ( lub ` p ) |
| 8 | 7 | cdm | |- dom ( lub ` p ) |
| 9 | 5 8 | wcel | |- ( Base ` p ) e. dom ( lub ` p ) |
| 10 | cglb | |- glb |
|
| 11 | 4 10 | cfv | |- ( glb ` p ) |
| 12 | 11 | cdm | |- dom ( glb ` p ) |
| 13 | 5 12 | wcel | |- ( Base ` p ) e. dom ( glb ` p ) |
| 14 | 9 13 | wa | |- ( ( Base ` p ) e. dom ( lub ` p ) /\ ( Base ` p ) e. dom ( glb ` p ) ) |
| 15 | vo | |- o |
|
| 16 | 15 | cv | |- o |
| 17 | coc | |- oc |
|
| 18 | 4 17 | cfv | |- ( oc ` p ) |
| 19 | 16 18 | wceq | |- o = ( oc ` p ) |
| 20 | va | |- a |
|
| 21 | vb | |- b |
|
| 22 | 20 | cv | |- a |
| 23 | 22 16 | cfv | |- ( o ` a ) |
| 24 | 23 5 | wcel | |- ( o ` a ) e. ( Base ` p ) |
| 25 | 23 16 | cfv | |- ( o ` ( o ` a ) ) |
| 26 | 25 22 | wceq | |- ( o ` ( o ` a ) ) = a |
| 27 | cple | |- le |
|
| 28 | 4 27 | cfv | |- ( le ` p ) |
| 29 | 21 | cv | |- b |
| 30 | 22 29 28 | wbr | |- a ( le ` p ) b |
| 31 | 29 16 | cfv | |- ( o ` b ) |
| 32 | 31 23 28 | wbr | |- ( o ` b ) ( le ` p ) ( o ` a ) |
| 33 | 30 32 | wi | |- ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) |
| 34 | 24 26 33 | w3a | |- ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) |
| 35 | cjn | |- join |
|
| 36 | 4 35 | cfv | |- ( join ` p ) |
| 37 | 22 23 36 | co | |- ( a ( join ` p ) ( o ` a ) ) |
| 38 | cp1 | |- 1. |
|
| 39 | 4 38 | cfv | |- ( 1. ` p ) |
| 40 | 37 39 | wceq | |- ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) |
| 41 | cmee | |- meet |
|
| 42 | 4 41 | cfv | |- ( meet ` p ) |
| 43 | 22 23 42 | co | |- ( a ( meet ` p ) ( o ` a ) ) |
| 44 | cp0 | |- 0. |
|
| 45 | 4 44 | cfv | |- ( 0. ` p ) |
| 46 | 43 45 | wceq | |- ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) |
| 47 | 34 40 46 | w3a | |- ( ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) /\ ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) /\ ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) ) |
| 48 | 47 21 5 | wral | |- A. b e. ( Base ` p ) ( ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) /\ ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) /\ ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) ) |
| 49 | 48 20 5 | wral | |- A. a e. ( Base ` p ) A. b e. ( Base ` p ) ( ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) /\ ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) /\ ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) ) |
| 50 | 19 49 | wa | |- ( o = ( oc ` p ) /\ A. a e. ( Base ` p ) A. b e. ( Base ` p ) ( ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) /\ ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) /\ ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) ) ) |
| 51 | 50 15 | wex | |- E. o ( o = ( oc ` p ) /\ A. a e. ( Base ` p ) A. b e. ( Base ` p ) ( ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) /\ ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) /\ ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) ) ) |
| 52 | 14 51 | wa | |- ( ( ( Base ` p ) e. dom ( lub ` p ) /\ ( Base ` p ) e. dom ( glb ` p ) ) /\ E. o ( o = ( oc ` p ) /\ A. a e. ( Base ` p ) A. b e. ( Base ` p ) ( ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) /\ ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) /\ ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) ) ) ) |
| 53 | 52 1 2 | crab | |- { p e. Poset | ( ( ( Base ` p ) e. dom ( lub ` p ) /\ ( Base ` p ) e. dom ( glb ` p ) ) /\ E. o ( o = ( oc ` p ) /\ A. a e. ( Base ` p ) A. b e. ( Base ` p ) ( ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) /\ ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) /\ ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) ) ) ) } |
| 54 | 0 53 | wceq | |- OP = { p e. Poset | ( ( ( Base ` p ) e. dom ( lub ` p ) /\ ( Base ` p ) e. dom ( glb ` p ) ) /\ E. o ( o = ( oc ` p ) /\ A. a e. ( Base ` p ) A. b e. ( Base ` p ) ( ( ( o ` a ) e. ( Base ` p ) /\ ( o ` ( o ` a ) ) = a /\ ( a ( le ` p ) b -> ( o ` b ) ( le ` p ) ( o ` a ) ) ) /\ ( a ( join ` p ) ( o ` a ) ) = ( 1. ` p ) /\ ( a ( meet ` p ) ( o ` a ) ) = ( 0. ` p ) ) ) ) } |