This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normed (left) module is a module which is also a normed group over a normed ring, such that the norm distributes over scalar multiplication. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-nlm | |- NrmMod = { w e. ( NrmGrp i^i LMod ) | [. ( Scalar ` w ) / f ]. ( f e. NrmRing /\ A. x e. ( Base ` f ) A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cnlm | |- NrmMod |
|
| 1 | vw | |- w |
|
| 2 | cngp | |- NrmGrp |
|
| 3 | clmod | |- LMod |
|
| 4 | 2 3 | cin | |- ( NrmGrp i^i LMod ) |
| 5 | csca | |- Scalar |
|
| 6 | 1 | cv | |- w |
| 7 | 6 5 | cfv | |- ( Scalar ` w ) |
| 8 | vf | |- f |
|
| 9 | 8 | cv | |- f |
| 10 | cnrg | |- NrmRing |
|
| 11 | 9 10 | wcel | |- f e. NrmRing |
| 12 | vx | |- x |
|
| 13 | cbs | |- Base |
|
| 14 | 9 13 | cfv | |- ( Base ` f ) |
| 15 | vy | |- y |
|
| 16 | 6 13 | cfv | |- ( Base ` w ) |
| 17 | cnm | |- norm |
|
| 18 | 6 17 | cfv | |- ( norm ` w ) |
| 19 | 12 | cv | |- x |
| 20 | cvsca | |- .s |
|
| 21 | 6 20 | cfv | |- ( .s ` w ) |
| 22 | 15 | cv | |- y |
| 23 | 19 22 21 | co | |- ( x ( .s ` w ) y ) |
| 24 | 23 18 | cfv | |- ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) |
| 25 | 9 17 | cfv | |- ( norm ` f ) |
| 26 | 19 25 | cfv | |- ( ( norm ` f ) ` x ) |
| 27 | cmul | |- x. |
|
| 28 | 22 18 | cfv | |- ( ( norm ` w ) ` y ) |
| 29 | 26 28 27 | co | |- ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) |
| 30 | 24 29 | wceq | |- ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) |
| 31 | 30 15 16 | wral | |- A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) |
| 32 | 31 12 14 | wral | |- A. x e. ( Base ` f ) A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) |
| 33 | 11 32 | wa | |- ( f e. NrmRing /\ A. x e. ( Base ` f ) A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) ) |
| 34 | 33 8 7 | wsbc | |- [. ( Scalar ` w ) / f ]. ( f e. NrmRing /\ A. x e. ( Base ` f ) A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) ) |
| 35 | 34 1 4 | crab | |- { w e. ( NrmGrp i^i LMod ) | [. ( Scalar ` w ) / f ]. ( f e. NrmRing /\ A. x e. ( Base ` f ) A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) ) } |
| 36 | 0 35 | wceq | |- NrmMod = { w e. ( NrmGrp i^i LMod ) | [. ( Scalar ` w ) / f ]. ( f e. NrmRing /\ A. x e. ( Base ` f ) A. y e. ( Base ` w ) ( ( norm ` w ) ` ( x ( .s ` w ) y ) ) = ( ( ( norm ` f ) ` x ) x. ( ( norm ` w ) ` y ) ) ) } |