This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A self-referencing abbreviated definition of the Lebesgue measure. (Contributed by Mario Carneiro, 19-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | volres | |- vol = ( vol* |` dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resdmres | |- ( vol* |` dom ( vol* |` { x | A. y e. ( `' vol* " RR ) ( vol* ` y ) = ( ( vol* ` ( y i^i x ) ) + ( vol* ` ( y \ x ) ) ) } ) ) = ( vol* |` { x | A. y e. ( `' vol* " RR ) ( vol* ` y ) = ( ( vol* ` ( y i^i x ) ) + ( vol* ` ( y \ x ) ) ) } ) |
|
| 2 | df-vol | |- vol = ( vol* |` { x | A. y e. ( `' vol* " RR ) ( vol* ` y ) = ( ( vol* ` ( y i^i x ) ) + ( vol* ` ( y \ x ) ) ) } ) |
|
| 3 | 2 | dmeqi | |- dom vol = dom ( vol* |` { x | A. y e. ( `' vol* " RR ) ( vol* ` y ) = ( ( vol* ` ( y i^i x ) ) + ( vol* ` ( y \ x ) ) ) } ) |
| 4 | 3 | reseq2i | |- ( vol* |` dom vol ) = ( vol* |` dom ( vol* |` { x | A. y e. ( `' vol* " RR ) ( vol* ` y ) = ( ( vol* ` ( y i^i x ) ) + ( vol* ` ( y \ x ) ) ) } ) ) |
| 5 | 1 4 2 | 3eqtr4ri | |- vol = ( vol* |` dom vol ) |