This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a topological space is closed iff it contains all its limit points. Corollary 6.7 of Munkres p. 97. (Contributed by NM, 26-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | |- X = U. J |
|
| Assertion | cldlp | |- ( ( J e. Top /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> ( ( limPt ` J ) ` S ) C_ S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | |- X = U. J |
|
| 2 | 1 | iscld3 | |- ( ( J e. Top /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> ( ( cls ` J ) ` S ) = S ) ) |
| 3 | 1 | clslp | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = ( S u. ( ( limPt ` J ) ` S ) ) ) |
| 4 | 3 | eqeq1d | |- ( ( J e. Top /\ S C_ X ) -> ( ( ( cls ` J ) ` S ) = S <-> ( S u. ( ( limPt ` J ) ` S ) ) = S ) ) |
| 5 | ssequn2 | |- ( ( ( limPt ` J ) ` S ) C_ S <-> ( S u. ( ( limPt ` J ) ` S ) ) = S ) |
|
| 6 | 4 5 | bitr4di | |- ( ( J e. Top /\ S C_ X ) -> ( ( ( cls ` J ) ` S ) = S <-> ( ( limPt ` J ) ` S ) C_ S ) ) |
| 7 | 2 6 | bitrd | |- ( ( J e. Top /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> ( ( limPt ` J ) ` S ) C_ S ) ) |