This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " P is a limit point of S " in terms of open sets. see islp2 , elcls , islp . (Contributed by FL, 31-Jul-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | |- X = U. J |
|
| Assertion | islp3 | |- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( P e. ( ( limPt ` J ) ` S ) <-> A. x e. J ( P e. x -> ( x i^i ( S \ { P } ) ) =/= (/) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | |- X = U. J |
|
| 2 | 1 | islp | |- ( ( J e. Top /\ S C_ X ) -> ( P e. ( ( limPt ` J ) ` S ) <-> P e. ( ( cls ` J ) ` ( S \ { P } ) ) ) ) |
| 3 | 2 | 3adant3 | |- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( P e. ( ( limPt ` J ) ` S ) <-> P e. ( ( cls ` J ) ` ( S \ { P } ) ) ) ) |
| 4 | simp2 | |- ( ( J e. Top /\ S C_ X /\ P e. X ) -> S C_ X ) |
|
| 5 | 4 | ssdifssd | |- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( S \ { P } ) C_ X ) |
| 6 | 1 | elcls | |- ( ( J e. Top /\ ( S \ { P } ) C_ X /\ P e. X ) -> ( P e. ( ( cls ` J ) ` ( S \ { P } ) ) <-> A. x e. J ( P e. x -> ( x i^i ( S \ { P } ) ) =/= (/) ) ) ) |
| 7 | 5 6 | syld3an2 | |- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( P e. ( ( cls ` J ) ` ( S \ { P } ) ) <-> A. x e. J ( P e. x -> ( x i^i ( S \ { P } ) ) =/= (/) ) ) ) |
| 8 | 3 7 | bitrd | |- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( P e. ( ( limPt ` J ) ` S ) <-> A. x e. J ( P e. x -> ( x i^i ( S \ { P } ) ) =/= (/) ) ) ) |