This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " P is a limit point of S " in terms of open sets. see islp2 , elcls , islp . (Contributed by FL, 31-Jul-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | islp3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ ( 𝑆 ∖ { 𝑃 } ) ) ≠ ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | islp | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ) ) |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ) ) |
| 4 | simp2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → 𝑆 ⊆ 𝑋 ) | |
| 5 | 4 | ssdifssd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑆 ∖ { 𝑃 } ) ⊆ 𝑋 ) |
| 6 | 1 | elcls | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ∖ { 𝑃 } ) ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ↔ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ ( 𝑆 ∖ { 𝑃 } ) ) ≠ ∅ ) ) ) |
| 7 | 5 6 | syld3an2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ↔ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ ( 𝑆 ∖ { 𝑃 } ) ) ≠ ∅ ) ) ) |
| 8 | 3 7 | bitrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ( 𝑥 ∩ ( 𝑆 ∖ { 𝑃 } ) ) ≠ ∅ ) ) ) |