This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A homomorphism of left modules is a group homomorphism which additionally preserves the scalar product. This requires both structures to be left modules over the same ring. (Contributed by Stefan O'Rear, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lmhm | |- LMHom = ( s e. LMod , t e. LMod |-> { f e. ( s GrpHom t ) | [. ( Scalar ` s ) / w ]. ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clmhm | |- LMHom |
|
| 1 | vs | |- s |
|
| 2 | clmod | |- LMod |
|
| 3 | vt | |- t |
|
| 4 | vf | |- f |
|
| 5 | 1 | cv | |- s |
| 6 | cghm | |- GrpHom |
|
| 7 | 3 | cv | |- t |
| 8 | 5 7 6 | co | |- ( s GrpHom t ) |
| 9 | csca | |- Scalar |
|
| 10 | 5 9 | cfv | |- ( Scalar ` s ) |
| 11 | vw | |- w |
|
| 12 | 7 9 | cfv | |- ( Scalar ` t ) |
| 13 | 11 | cv | |- w |
| 14 | 12 13 | wceq | |- ( Scalar ` t ) = w |
| 15 | vx | |- x |
|
| 16 | cbs | |- Base |
|
| 17 | 13 16 | cfv | |- ( Base ` w ) |
| 18 | vy | |- y |
|
| 19 | 5 16 | cfv | |- ( Base ` s ) |
| 20 | 4 | cv | |- f |
| 21 | 15 | cv | |- x |
| 22 | cvsca | |- .s |
|
| 23 | 5 22 | cfv | |- ( .s ` s ) |
| 24 | 18 | cv | |- y |
| 25 | 21 24 23 | co | |- ( x ( .s ` s ) y ) |
| 26 | 25 20 | cfv | |- ( f ` ( x ( .s ` s ) y ) ) |
| 27 | 7 22 | cfv | |- ( .s ` t ) |
| 28 | 24 20 | cfv | |- ( f ` y ) |
| 29 | 21 28 27 | co | |- ( x ( .s ` t ) ( f ` y ) ) |
| 30 | 26 29 | wceq | |- ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) |
| 31 | 30 18 19 | wral | |- A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) |
| 32 | 31 15 17 | wral | |- A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) |
| 33 | 14 32 | wa | |- ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) |
| 34 | 33 11 10 | wsbc | |- [. ( Scalar ` s ) / w ]. ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) |
| 35 | 34 4 8 | crab | |- { f e. ( s GrpHom t ) | [. ( Scalar ` s ) / w ]. ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) } |
| 36 | 1 3 2 2 35 | cmpo | |- ( s e. LMod , t e. LMod |-> { f e. ( s GrpHom t ) | [. ( Scalar ` s ) / w ]. ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) } ) |
| 37 | 0 36 | wceq | |- LMHom = ( s e. LMod , t e. LMod |-> { f e. ( s GrpHom t ) | [. ( Scalar ` s ) / w ]. ( ( Scalar ` t ) = w /\ A. x e. ( Base ` w ) A. y e. ( Base ` s ) ( f ` ( x ( .s ` s ) y ) ) = ( x ( .s ` t ) ( f ` y ) ) ) } ) |