This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of irreducible elements in a ring. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-irred | |- Irred = ( w e. _V |-> [_ ( ( Base ` w ) \ ( Unit ` w ) ) / b ]_ { z e. b | A. x e. b A. y e. b ( x ( .r ` w ) y ) =/= z } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cir | |- Irred |
|
| 1 | vw | |- w |
|
| 2 | cvv | |- _V |
|
| 3 | cbs | |- Base |
|
| 4 | 1 | cv | |- w |
| 5 | 4 3 | cfv | |- ( Base ` w ) |
| 6 | cui | |- Unit |
|
| 7 | 4 6 | cfv | |- ( Unit ` w ) |
| 8 | 5 7 | cdif | |- ( ( Base ` w ) \ ( Unit ` w ) ) |
| 9 | vb | |- b |
|
| 10 | vz | |- z |
|
| 11 | 9 | cv | |- b |
| 12 | vx | |- x |
|
| 13 | vy | |- y |
|
| 14 | 12 | cv | |- x |
| 15 | cmulr | |- .r |
|
| 16 | 4 15 | cfv | |- ( .r ` w ) |
| 17 | 13 | cv | |- y |
| 18 | 14 17 16 | co | |- ( x ( .r ` w ) y ) |
| 19 | 10 | cv | |- z |
| 20 | 18 19 | wne | |- ( x ( .r ` w ) y ) =/= z |
| 21 | 20 13 11 | wral | |- A. y e. b ( x ( .r ` w ) y ) =/= z |
| 22 | 21 12 11 | wral | |- A. x e. b A. y e. b ( x ( .r ` w ) y ) =/= z |
| 23 | 22 10 11 | crab | |- { z e. b | A. x e. b A. y e. b ( x ( .r ` w ) y ) =/= z } |
| 24 | 9 8 23 | csb | |- [_ ( ( Base ` w ) \ ( Unit ` w ) ) / b ]_ { z e. b | A. x e. b A. y e. b ( x ( .r ` w ) y ) =/= z } |
| 25 | 1 2 24 | cmpt | |- ( w e. _V |-> [_ ( ( Base ` w ) \ ( Unit ` w ) ) / b ]_ { z e. b | A. x e. b A. y e. b ( x ( .r ` w ) y ) =/= z } ) |
| 26 | 0 25 | wceq | |- Irred = ( w e. _V |-> [_ ( ( Base ` w ) \ ( Unit ` w ) ) / b ]_ { z e. b | A. x e. b A. y e. b ( x ( .r ` w ) y ) =/= z } ) |