This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isinito4.1 | |- ( ph -> .1. e. TermCat ) |
|
| isinito4.x | |- ( ph -> X e. ( Base ` .1. ) ) |
||
| isinito4a.f | |- F = ( ( 1st ` ( .1. DiagFunc C ) ) ` X ) |
||
| Assertion | isinito4a | |- ( ph -> ( I e. ( InitO ` C ) <-> I e. dom ( F ( C UP .1. ) X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isinito4.1 | |- ( ph -> .1. e. TermCat ) |
|
| 2 | isinito4.x | |- ( ph -> X e. ( Base ` .1. ) ) |
|
| 3 | isinito4a.f | |- F = ( ( 1st ` ( .1. DiagFunc C ) ) ` X ) |
|
| 4 | initorcl | |- ( I e. ( InitO ` C ) -> C e. Cat ) |
|
| 5 | 4 | anim2i | |- ( ( ph /\ I e. ( InitO ` C ) ) -> ( ph /\ C e. Cat ) ) |
| 6 | uobrcl | |- ( I e. dom ( F ( C UP .1. ) X ) -> ( C e. Cat /\ .1. e. Cat ) ) |
|
| 7 | 6 | simpld | |- ( I e. dom ( F ( C UP .1. ) X ) -> C e. Cat ) |
| 8 | 7 | anim2i | |- ( ( ph /\ I e. dom ( F ( C UP .1. ) X ) ) -> ( ph /\ C e. Cat ) ) |
| 9 | 1 | adantr | |- ( ( ph /\ C e. Cat ) -> .1. e. TermCat ) |
| 10 | 2 | adantr | |- ( ( ph /\ C e. Cat ) -> X e. ( Base ` .1. ) ) |
| 11 | eqid | |- ( .1. DiagFunc C ) = ( .1. DiagFunc C ) |
|
| 12 | 9 | termccd | |- ( ( ph /\ C e. Cat ) -> .1. e. Cat ) |
| 13 | simpr | |- ( ( ph /\ C e. Cat ) -> C e. Cat ) |
|
| 14 | eqid | |- ( Base ` .1. ) = ( Base ` .1. ) |
|
| 15 | 11 12 13 14 10 3 | diag1cl | |- ( ( ph /\ C e. Cat ) -> F e. ( C Func .1. ) ) |
| 16 | 9 10 15 | isinito4 | |- ( ( ph /\ C e. Cat ) -> ( I e. ( InitO ` C ) <-> I e. dom ( F ( C UP .1. ) X ) ) ) |
| 17 | 5 8 16 | pm5.21nd | |- ( ph -> ( I e. ( InitO ` C ) <-> I e. dom ( F ( C UP .1. ) X ) ) ) |