This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 23-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isinito2.1 | |- .1. = ( SetCat ` 1o ) |
|
| isinito2.f | |- F = ( ( 1st ` ( .1. DiagFunc C ) ) ` (/) ) |
||
| Assertion | isinito3 | |- ( I e. ( InitO ` C ) <-> I e. dom ( F ( C UP .1. ) (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isinito2.1 | |- .1. = ( SetCat ` 1o ) |
|
| 2 | isinito2.f | |- F = ( ( 1st ` ( .1. DiagFunc C ) ) ` (/) ) |
|
| 3 | relup | |- Rel ( F ( C UP .1. ) (/) ) |
|
| 4 | 1 2 | isinito2 | |- ( I e. ( InitO ` C ) <-> I ( F ( C UP .1. ) (/) ) (/) ) |
| 5 | 4 | biimpi | |- ( I e. ( InitO ` C ) -> I ( F ( C UP .1. ) (/) ) (/) ) |
| 6 | releldm | |- ( ( Rel ( F ( C UP .1. ) (/) ) /\ I ( F ( C UP .1. ) (/) ) (/) ) -> I e. dom ( F ( C UP .1. ) (/) ) ) |
|
| 7 | 3 5 6 | sylancr | |- ( I e. ( InitO ` C ) -> I e. dom ( F ( C UP .1. ) (/) ) ) |
| 8 | releldmb | |- ( Rel ( F ( C UP .1. ) (/) ) -> ( I e. dom ( F ( C UP .1. ) (/) ) <-> E. y I ( F ( C UP .1. ) (/) ) y ) ) |
|
| 9 | 3 8 | ax-mp | |- ( I e. dom ( F ( C UP .1. ) (/) ) <-> E. y I ( F ( C UP .1. ) (/) ) y ) |
| 10 | id | |- ( I ( F ( C UP .1. ) (/) ) y -> I ( F ( C UP .1. ) (/) ) y ) |
|
| 11 | 10 | up1st2nd | |- ( I ( F ( C UP .1. ) (/) ) y -> I ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C UP .1. ) (/) ) y ) |
| 12 | 1 | setc1ohomfval | |- { <. (/) , (/) , 1o >. } = ( Hom ` .1. ) |
| 13 | 11 12 | uprcl5 | |- ( I ( F ( C UP .1. ) (/) ) y -> y e. ( (/) { <. (/) , (/) , 1o >. } ( ( 1st ` F ) ` I ) ) ) |
| 14 | eqid | |- ( .1. DiagFunc C ) = ( .1. DiagFunc C ) |
|
| 15 | setc1oterm | |- ( SetCat ` 1o ) e. TermCat |
|
| 16 | 1 15 | eqeltri | |- .1. e. TermCat |
| 17 | 16 | a1i | |- ( I ( F ( C UP .1. ) (/) ) y -> .1. e. TermCat ) |
| 18 | 17 | termccd | |- ( I ( F ( C UP .1. ) (/) ) y -> .1. e. Cat ) |
| 19 | 11 | uprcl2 | |- ( I ( F ( C UP .1. ) (/) ) y -> ( 1st ` F ) ( C Func .1. ) ( 2nd ` F ) ) |
| 20 | 19 | funcrcl2 | |- ( I ( F ( C UP .1. ) (/) ) y -> C e. Cat ) |
| 21 | 1 | setc1obas | |- 1o = ( Base ` .1. ) |
| 22 | 11 21 | uprcl3 | |- ( I ( F ( C UP .1. ) (/) ) y -> (/) e. 1o ) |
| 23 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 24 | 11 23 | uprcl4 | |- ( I ( F ( C UP .1. ) (/) ) y -> I e. ( Base ` C ) ) |
| 25 | 14 18 20 21 22 2 23 24 | diag11 | |- ( I ( F ( C UP .1. ) (/) ) y -> ( ( 1st ` F ) ` I ) = (/) ) |
| 26 | 25 | oveq2d | |- ( I ( F ( C UP .1. ) (/) ) y -> ( (/) { <. (/) , (/) , 1o >. } ( ( 1st ` F ) ` I ) ) = ( (/) { <. (/) , (/) , 1o >. } (/) ) ) |
| 27 | 1oex | |- 1o e. _V |
|
| 28 | 27 | ovsn2 | |- ( (/) { <. (/) , (/) , 1o >. } (/) ) = 1o |
| 29 | 26 28 | eqtrdi | |- ( I ( F ( C UP .1. ) (/) ) y -> ( (/) { <. (/) , (/) , 1o >. } ( ( 1st ` F ) ` I ) ) = 1o ) |
| 30 | 13 29 | eleqtrd | |- ( I ( F ( C UP .1. ) (/) ) y -> y e. 1o ) |
| 31 | el1o | |- ( y e. 1o <-> y = (/) ) |
|
| 32 | 30 31 | sylib | |- ( I ( F ( C UP .1. ) (/) ) y -> y = (/) ) |
| 33 | 10 32 | breqtrd | |- ( I ( F ( C UP .1. ) (/) ) y -> I ( F ( C UP .1. ) (/) ) (/) ) |
| 34 | 33 4 | sylibr | |- ( I ( F ( C UP .1. ) (/) ) y -> I e. ( InitO ` C ) ) |
| 35 | 34 | exlimiv | |- ( E. y I ( F ( C UP .1. ) (/) ) y -> I e. ( InitO ` C ) ) |
| 36 | 9 35 | sylbi | |- ( I e. dom ( F ( C UP .1. ) (/) ) -> I e. ( InitO ` C ) ) |
| 37 | 7 36 | impbii | |- ( I e. ( InitO ` C ) <-> I e. dom ( F ( C UP .1. ) (/) ) ) |