This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate definition of df-inito using universal property. See also the "Equivalent formulations" section of https://en.wikipedia.org/wiki/Initial_and_terminal_objects . (Contributed by Zhi Wang, 23-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfinito4 | |- InitO = ( c e. Cat |-> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initofn | |- InitO Fn Cat |
|
| 2 | ovex | |- ( f ( c UP d ) (/) ) e. _V |
|
| 3 | 2 | dmex | |- dom ( f ( c UP d ) (/) ) e. _V |
| 4 | 3 | csbex | |- [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) e. _V |
| 5 | 4 | csbex | |- [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) e. _V |
| 6 | eqid | |- ( c e. Cat |-> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) ) = ( c e. Cat |-> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) ) |
|
| 7 | 5 6 | fnmpti | |- ( c e. Cat |-> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) ) Fn Cat |
| 8 | eqfnfv | |- ( ( InitO Fn Cat /\ ( c e. Cat |-> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) ) Fn Cat ) -> ( InitO = ( c e. Cat |-> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) ) <-> A. e e. Cat ( InitO ` e ) = ( ( c e. Cat |-> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) ) ` e ) ) ) |
|
| 9 | 1 7 8 | mp2an | |- ( InitO = ( c e. Cat |-> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) ) <-> A. e e. Cat ( InitO ` e ) = ( ( c e. Cat |-> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) ) ` e ) ) |
| 10 | eqid | |- ( SetCat ` 1o ) = ( SetCat ` 1o ) |
|
| 11 | eqid | |- ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc e ) ) ` (/) ) = ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc e ) ) ` (/) ) |
|
| 12 | 10 11 | isinito3 | |- ( x e. ( InitO ` e ) <-> x e. dom ( ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc e ) ) ` (/) ) ( e UP ( SetCat ` 1o ) ) (/) ) ) |
| 13 | 12 | eqriv | |- ( InitO ` e ) = dom ( ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc e ) ) ` (/) ) ( e UP ( SetCat ` 1o ) ) (/) ) |
| 14 | fvex | |- ( SetCat ` 1o ) e. _V |
|
| 15 | fvexd | |- ( d = ( SetCat ` 1o ) -> ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) e. _V ) |
|
| 16 | simpl | |- ( ( d = ( SetCat ` 1o ) /\ f = ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) ) -> d = ( SetCat ` 1o ) ) |
|
| 17 | 16 | oveq2d | |- ( ( d = ( SetCat ` 1o ) /\ f = ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) ) -> ( e UP d ) = ( e UP ( SetCat ` 1o ) ) ) |
| 18 | simpr | |- ( ( d = ( SetCat ` 1o ) /\ f = ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) ) -> f = ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) ) |
|
| 19 | 16 | fvoveq1d | |- ( ( d = ( SetCat ` 1o ) /\ f = ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) ) -> ( 1st ` ( d DiagFunc e ) ) = ( 1st ` ( ( SetCat ` 1o ) DiagFunc e ) ) ) |
| 20 | 19 | fveq1d | |- ( ( d = ( SetCat ` 1o ) /\ f = ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) ) -> ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) = ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc e ) ) ` (/) ) ) |
| 21 | 18 20 | eqtrd | |- ( ( d = ( SetCat ` 1o ) /\ f = ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) ) -> f = ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc e ) ) ` (/) ) ) |
| 22 | eqidd | |- ( ( d = ( SetCat ` 1o ) /\ f = ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) ) -> (/) = (/) ) |
|
| 23 | 17 21 22 | oveq123d | |- ( ( d = ( SetCat ` 1o ) /\ f = ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) ) -> ( f ( e UP d ) (/) ) = ( ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc e ) ) ` (/) ) ( e UP ( SetCat ` 1o ) ) (/) ) ) |
| 24 | 23 | dmeqd | |- ( ( d = ( SetCat ` 1o ) /\ f = ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) ) -> dom ( f ( e UP d ) (/) ) = dom ( ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc e ) ) ` (/) ) ( e UP ( SetCat ` 1o ) ) (/) ) ) |
| 25 | 15 24 | csbied | |- ( d = ( SetCat ` 1o ) -> [_ ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) / f ]_ dom ( f ( e UP d ) (/) ) = dom ( ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc e ) ) ` (/) ) ( e UP ( SetCat ` 1o ) ) (/) ) ) |
| 26 | 14 25 | csbie | |- [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) / f ]_ dom ( f ( e UP d ) (/) ) = dom ( ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc e ) ) ` (/) ) ( e UP ( SetCat ` 1o ) ) (/) ) |
| 27 | 13 26 | eqtr4i | |- ( InitO ` e ) = [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) / f ]_ dom ( f ( e UP d ) (/) ) |
| 28 | oveq2 | |- ( c = e -> ( d DiagFunc c ) = ( d DiagFunc e ) ) |
|
| 29 | 28 | fveq2d | |- ( c = e -> ( 1st ` ( d DiagFunc c ) ) = ( 1st ` ( d DiagFunc e ) ) ) |
| 30 | 29 | fveq1d | |- ( c = e -> ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) = ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) ) |
| 31 | oveq1 | |- ( c = e -> ( c UP d ) = ( e UP d ) ) |
|
| 32 | 31 | oveqd | |- ( c = e -> ( f ( c UP d ) (/) ) = ( f ( e UP d ) (/) ) ) |
| 33 | 32 | dmeqd | |- ( c = e -> dom ( f ( c UP d ) (/) ) = dom ( f ( e UP d ) (/) ) ) |
| 34 | 30 33 | csbeq12dv | |- ( c = e -> [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) = [_ ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) / f ]_ dom ( f ( e UP d ) (/) ) ) |
| 35 | 34 | csbeq2dv | |- ( c = e -> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) = [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) / f ]_ dom ( f ( e UP d ) (/) ) ) |
| 36 | ovex | |- ( f ( e UP d ) (/) ) e. _V |
|
| 37 | 36 | dmex | |- dom ( f ( e UP d ) (/) ) e. _V |
| 38 | 37 | csbex | |- [_ ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) / f ]_ dom ( f ( e UP d ) (/) ) e. _V |
| 39 | 38 | csbex | |- [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) / f ]_ dom ( f ( e UP d ) (/) ) e. _V |
| 40 | 35 6 39 | fvmpt | |- ( e e. Cat -> ( ( c e. Cat |-> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) ) ` e ) = [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) / f ]_ dom ( f ( e UP d ) (/) ) ) |
| 41 | 27 40 | eqtr4id | |- ( e e. Cat -> ( InitO ` e ) = ( ( c e. Cat |-> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) ) ` e ) ) |
| 42 | 9 41 | mprgbir | |- InitO = ( c e. Cat |-> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) ) |