This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a (left) group action". The group G is said to act on the base set Y of the action, which is not assumed to have any special properties. There is a related notion of right group action, but as the Wikipedia article explains, it is not mathematically interesting. The way actions are usually thought of is that each element g of G is a permutation of the elements of Y (see gapm ). Since group theory was classically about symmetry groups, it is therefore likely that the notion of group action was useful even in early group theory. (Contributed by Jeff Hankins, 10-Aug-2009) (Revised by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isga.1 | |- X = ( Base ` G ) |
|
| isga.2 | |- .+ = ( +g ` G ) |
||
| isga.3 | |- .0. = ( 0g ` G ) |
||
| Assertion | isga | |- ( .(+) e. ( G GrpAct Y ) <-> ( ( G e. Grp /\ Y e. _V ) /\ ( .(+) : ( X X. Y ) --> Y /\ A. x e. Y ( ( .0. .(+) x ) = x /\ A. y e. X A. z e. X ( ( y .+ z ) .(+) x ) = ( y .(+) ( z .(+) x ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isga.1 | |- X = ( Base ` G ) |
|
| 2 | isga.2 | |- .+ = ( +g ` G ) |
|
| 3 | isga.3 | |- .0. = ( 0g ` G ) |
|
| 4 | df-ga | |- GrpAct = ( g e. Grp , s e. _V |-> [_ ( Base ` g ) / b ]_ { m e. ( s ^m ( b X. s ) ) | A. x e. s ( ( ( 0g ` g ) m x ) = x /\ A. y e. b A. z e. b ( ( y ( +g ` g ) z ) m x ) = ( y m ( z m x ) ) ) } ) |
|
| 5 | 4 | elmpocl | |- ( .(+) e. ( G GrpAct Y ) -> ( G e. Grp /\ Y e. _V ) ) |
| 6 | fvexd | |- ( ( g = G /\ s = Y ) -> ( Base ` g ) e. _V ) |
|
| 7 | simplr | |- ( ( ( g = G /\ s = Y ) /\ b = ( Base ` g ) ) -> s = Y ) |
|
| 8 | id | |- ( b = ( Base ` g ) -> b = ( Base ` g ) ) |
|
| 9 | simpl | |- ( ( g = G /\ s = Y ) -> g = G ) |
|
| 10 | 9 | fveq2d | |- ( ( g = G /\ s = Y ) -> ( Base ` g ) = ( Base ` G ) ) |
| 11 | 10 1 | eqtr4di | |- ( ( g = G /\ s = Y ) -> ( Base ` g ) = X ) |
| 12 | 8 11 | sylan9eqr | |- ( ( ( g = G /\ s = Y ) /\ b = ( Base ` g ) ) -> b = X ) |
| 13 | 12 7 | xpeq12d | |- ( ( ( g = G /\ s = Y ) /\ b = ( Base ` g ) ) -> ( b X. s ) = ( X X. Y ) ) |
| 14 | 7 13 | oveq12d | |- ( ( ( g = G /\ s = Y ) /\ b = ( Base ` g ) ) -> ( s ^m ( b X. s ) ) = ( Y ^m ( X X. Y ) ) ) |
| 15 | simpll | |- ( ( ( g = G /\ s = Y ) /\ b = ( Base ` g ) ) -> g = G ) |
|
| 16 | 15 | fveq2d | |- ( ( ( g = G /\ s = Y ) /\ b = ( Base ` g ) ) -> ( 0g ` g ) = ( 0g ` G ) ) |
| 17 | 16 3 | eqtr4di | |- ( ( ( g = G /\ s = Y ) /\ b = ( Base ` g ) ) -> ( 0g ` g ) = .0. ) |
| 18 | 17 | oveq1d | |- ( ( ( g = G /\ s = Y ) /\ b = ( Base ` g ) ) -> ( ( 0g ` g ) m x ) = ( .0. m x ) ) |
| 19 | 18 | eqeq1d | |- ( ( ( g = G /\ s = Y ) /\ b = ( Base ` g ) ) -> ( ( ( 0g ` g ) m x ) = x <-> ( .0. m x ) = x ) ) |
| 20 | 15 | fveq2d | |- ( ( ( g = G /\ s = Y ) /\ b = ( Base ` g ) ) -> ( +g ` g ) = ( +g ` G ) ) |
| 21 | 20 2 | eqtr4di | |- ( ( ( g = G /\ s = Y ) /\ b = ( Base ` g ) ) -> ( +g ` g ) = .+ ) |
| 22 | 21 | oveqd | |- ( ( ( g = G /\ s = Y ) /\ b = ( Base ` g ) ) -> ( y ( +g ` g ) z ) = ( y .+ z ) ) |
| 23 | 22 | oveq1d | |- ( ( ( g = G /\ s = Y ) /\ b = ( Base ` g ) ) -> ( ( y ( +g ` g ) z ) m x ) = ( ( y .+ z ) m x ) ) |
| 24 | 23 | eqeq1d | |- ( ( ( g = G /\ s = Y ) /\ b = ( Base ` g ) ) -> ( ( ( y ( +g ` g ) z ) m x ) = ( y m ( z m x ) ) <-> ( ( y .+ z ) m x ) = ( y m ( z m x ) ) ) ) |
| 25 | 12 24 | raleqbidv | |- ( ( ( g = G /\ s = Y ) /\ b = ( Base ` g ) ) -> ( A. z e. b ( ( y ( +g ` g ) z ) m x ) = ( y m ( z m x ) ) <-> A. z e. X ( ( y .+ z ) m x ) = ( y m ( z m x ) ) ) ) |
| 26 | 12 25 | raleqbidv | |- ( ( ( g = G /\ s = Y ) /\ b = ( Base ` g ) ) -> ( A. y e. b A. z e. b ( ( y ( +g ` g ) z ) m x ) = ( y m ( z m x ) ) <-> A. y e. X A. z e. X ( ( y .+ z ) m x ) = ( y m ( z m x ) ) ) ) |
| 27 | 19 26 | anbi12d | |- ( ( ( g = G /\ s = Y ) /\ b = ( Base ` g ) ) -> ( ( ( ( 0g ` g ) m x ) = x /\ A. y e. b A. z e. b ( ( y ( +g ` g ) z ) m x ) = ( y m ( z m x ) ) ) <-> ( ( .0. m x ) = x /\ A. y e. X A. z e. X ( ( y .+ z ) m x ) = ( y m ( z m x ) ) ) ) ) |
| 28 | 7 27 | raleqbidv | |- ( ( ( g = G /\ s = Y ) /\ b = ( Base ` g ) ) -> ( A. x e. s ( ( ( 0g ` g ) m x ) = x /\ A. y e. b A. z e. b ( ( y ( +g ` g ) z ) m x ) = ( y m ( z m x ) ) ) <-> A. x e. Y ( ( .0. m x ) = x /\ A. y e. X A. z e. X ( ( y .+ z ) m x ) = ( y m ( z m x ) ) ) ) ) |
| 29 | 14 28 | rabeqbidv | |- ( ( ( g = G /\ s = Y ) /\ b = ( Base ` g ) ) -> { m e. ( s ^m ( b X. s ) ) | A. x e. s ( ( ( 0g ` g ) m x ) = x /\ A. y e. b A. z e. b ( ( y ( +g ` g ) z ) m x ) = ( y m ( z m x ) ) ) } = { m e. ( Y ^m ( X X. Y ) ) | A. x e. Y ( ( .0. m x ) = x /\ A. y e. X A. z e. X ( ( y .+ z ) m x ) = ( y m ( z m x ) ) ) } ) |
| 30 | 6 29 | csbied | |- ( ( g = G /\ s = Y ) -> [_ ( Base ` g ) / b ]_ { m e. ( s ^m ( b X. s ) ) | A. x e. s ( ( ( 0g ` g ) m x ) = x /\ A. y e. b A. z e. b ( ( y ( +g ` g ) z ) m x ) = ( y m ( z m x ) ) ) } = { m e. ( Y ^m ( X X. Y ) ) | A. x e. Y ( ( .0. m x ) = x /\ A. y e. X A. z e. X ( ( y .+ z ) m x ) = ( y m ( z m x ) ) ) } ) |
| 31 | ovex | |- ( Y ^m ( X X. Y ) ) e. _V |
|
| 32 | 31 | rabex | |- { m e. ( Y ^m ( X X. Y ) ) | A. x e. Y ( ( .0. m x ) = x /\ A. y e. X A. z e. X ( ( y .+ z ) m x ) = ( y m ( z m x ) ) ) } e. _V |
| 33 | 30 4 32 | ovmpoa | |- ( ( G e. Grp /\ Y e. _V ) -> ( G GrpAct Y ) = { m e. ( Y ^m ( X X. Y ) ) | A. x e. Y ( ( .0. m x ) = x /\ A. y e. X A. z e. X ( ( y .+ z ) m x ) = ( y m ( z m x ) ) ) } ) |
| 34 | 33 | eleq2d | |- ( ( G e. Grp /\ Y e. _V ) -> ( .(+) e. ( G GrpAct Y ) <-> .(+) e. { m e. ( Y ^m ( X X. Y ) ) | A. x e. Y ( ( .0. m x ) = x /\ A. y e. X A. z e. X ( ( y .+ z ) m x ) = ( y m ( z m x ) ) ) } ) ) |
| 35 | oveq | |- ( m = .(+) -> ( .0. m x ) = ( .0. .(+) x ) ) |
|
| 36 | 35 | eqeq1d | |- ( m = .(+) -> ( ( .0. m x ) = x <-> ( .0. .(+) x ) = x ) ) |
| 37 | oveq | |- ( m = .(+) -> ( ( y .+ z ) m x ) = ( ( y .+ z ) .(+) x ) ) |
|
| 38 | oveq | |- ( m = .(+) -> ( y m ( z m x ) ) = ( y .(+) ( z m x ) ) ) |
|
| 39 | oveq | |- ( m = .(+) -> ( z m x ) = ( z .(+) x ) ) |
|
| 40 | 39 | oveq2d | |- ( m = .(+) -> ( y .(+) ( z m x ) ) = ( y .(+) ( z .(+) x ) ) ) |
| 41 | 38 40 | eqtrd | |- ( m = .(+) -> ( y m ( z m x ) ) = ( y .(+) ( z .(+) x ) ) ) |
| 42 | 37 41 | eqeq12d | |- ( m = .(+) -> ( ( ( y .+ z ) m x ) = ( y m ( z m x ) ) <-> ( ( y .+ z ) .(+) x ) = ( y .(+) ( z .(+) x ) ) ) ) |
| 43 | 42 | 2ralbidv | |- ( m = .(+) -> ( A. y e. X A. z e. X ( ( y .+ z ) m x ) = ( y m ( z m x ) ) <-> A. y e. X A. z e. X ( ( y .+ z ) .(+) x ) = ( y .(+) ( z .(+) x ) ) ) ) |
| 44 | 36 43 | anbi12d | |- ( m = .(+) -> ( ( ( .0. m x ) = x /\ A. y e. X A. z e. X ( ( y .+ z ) m x ) = ( y m ( z m x ) ) ) <-> ( ( .0. .(+) x ) = x /\ A. y e. X A. z e. X ( ( y .+ z ) .(+) x ) = ( y .(+) ( z .(+) x ) ) ) ) ) |
| 45 | 44 | ralbidv | |- ( m = .(+) -> ( A. x e. Y ( ( .0. m x ) = x /\ A. y e. X A. z e. X ( ( y .+ z ) m x ) = ( y m ( z m x ) ) ) <-> A. x e. Y ( ( .0. .(+) x ) = x /\ A. y e. X A. z e. X ( ( y .+ z ) .(+) x ) = ( y .(+) ( z .(+) x ) ) ) ) ) |
| 46 | 45 | elrab | |- ( .(+) e. { m e. ( Y ^m ( X X. Y ) ) | A. x e. Y ( ( .0. m x ) = x /\ A. y e. X A. z e. X ( ( y .+ z ) m x ) = ( y m ( z m x ) ) ) } <-> ( .(+) e. ( Y ^m ( X X. Y ) ) /\ A. x e. Y ( ( .0. .(+) x ) = x /\ A. y e. X A. z e. X ( ( y .+ z ) .(+) x ) = ( y .(+) ( z .(+) x ) ) ) ) ) |
| 47 | 34 46 | bitrdi | |- ( ( G e. Grp /\ Y e. _V ) -> ( .(+) e. ( G GrpAct Y ) <-> ( .(+) e. ( Y ^m ( X X. Y ) ) /\ A. x e. Y ( ( .0. .(+) x ) = x /\ A. y e. X A. z e. X ( ( y .+ z ) .(+) x ) = ( y .(+) ( z .(+) x ) ) ) ) ) ) |
| 48 | simpr | |- ( ( G e. Grp /\ Y e. _V ) -> Y e. _V ) |
|
| 49 | 1 | fvexi | |- X e. _V |
| 50 | xpexg | |- ( ( X e. _V /\ Y e. _V ) -> ( X X. Y ) e. _V ) |
|
| 51 | 49 48 50 | sylancr | |- ( ( G e. Grp /\ Y e. _V ) -> ( X X. Y ) e. _V ) |
| 52 | 48 51 | elmapd | |- ( ( G e. Grp /\ Y e. _V ) -> ( .(+) e. ( Y ^m ( X X. Y ) ) <-> .(+) : ( X X. Y ) --> Y ) ) |
| 53 | 52 | anbi1d | |- ( ( G e. Grp /\ Y e. _V ) -> ( ( .(+) e. ( Y ^m ( X X. Y ) ) /\ A. x e. Y ( ( .0. .(+) x ) = x /\ A. y e. X A. z e. X ( ( y .+ z ) .(+) x ) = ( y .(+) ( z .(+) x ) ) ) ) <-> ( .(+) : ( X X. Y ) --> Y /\ A. x e. Y ( ( .0. .(+) x ) = x /\ A. y e. X A. z e. X ( ( y .+ z ) .(+) x ) = ( y .(+) ( z .(+) x ) ) ) ) ) ) |
| 54 | 47 53 | bitrd | |- ( ( G e. Grp /\ Y e. _V ) -> ( .(+) e. ( G GrpAct Y ) <-> ( .(+) : ( X X. Y ) --> Y /\ A. x e. Y ( ( .0. .(+) x ) = x /\ A. y e. X A. z e. X ( ( y .+ z ) .(+) x ) = ( y .(+) ( z .(+) x ) ) ) ) ) ) |
| 55 | 5 54 | biadanii | |- ( .(+) e. ( G GrpAct Y ) <-> ( ( G e. Grp /\ Y e. _V ) /\ ( .(+) : ( X X. Y ) --> Y /\ A. x e. Y ( ( .0. .(+) x ) = x /\ A. y e. X A. z e. X ( ( y .+ z ) .(+) x ) = ( y .(+) ( z .(+) x ) ) ) ) ) ) |