This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition for a topology to be finer than another. (Contributed by Jeff Hankins, 28-Sep-2009) (Revised by Mario Carneiro, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfne.1 | |- X = U. A |
|
| isfne.2 | |- Y = U. B |
||
| Assertion | isfne4b | |- ( B e. V -> ( A Fne B <-> ( X = Y /\ ( topGen ` A ) C_ ( topGen ` B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfne.1 | |- X = U. A |
|
| 2 | isfne.2 | |- Y = U. B |
|
| 3 | 1 2 | isfne4 | |- ( A Fne B <-> ( X = Y /\ A C_ ( topGen ` B ) ) ) |
| 4 | simpr | |- ( ( B e. V /\ X = Y ) -> X = Y ) |
|
| 5 | 4 1 2 | 3eqtr3g | |- ( ( B e. V /\ X = Y ) -> U. A = U. B ) |
| 6 | uniexg | |- ( B e. V -> U. B e. _V ) |
|
| 7 | 6 | adantr | |- ( ( B e. V /\ X = Y ) -> U. B e. _V ) |
| 8 | 5 7 | eqeltrd | |- ( ( B e. V /\ X = Y ) -> U. A e. _V ) |
| 9 | uniexb | |- ( A e. _V <-> U. A e. _V ) |
|
| 10 | 8 9 | sylibr | |- ( ( B e. V /\ X = Y ) -> A e. _V ) |
| 11 | simpl | |- ( ( B e. V /\ X = Y ) -> B e. V ) |
|
| 12 | tgss3 | |- ( ( A e. _V /\ B e. V ) -> ( ( topGen ` A ) C_ ( topGen ` B ) <-> A C_ ( topGen ` B ) ) ) |
|
| 13 | 10 11 12 | syl2anc | |- ( ( B e. V /\ X = Y ) -> ( ( topGen ` A ) C_ ( topGen ` B ) <-> A C_ ( topGen ` B ) ) ) |
| 14 | 13 | pm5.32da | |- ( B e. V -> ( ( X = Y /\ ( topGen ` A ) C_ ( topGen ` B ) ) <-> ( X = Y /\ A C_ ( topGen ` B ) ) ) ) |
| 15 | 3 14 | bitr4id | |- ( B e. V -> ( A Fne B <-> ( X = Y /\ ( topGen ` A ) C_ ( topGen ` B ) ) ) ) |