This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class is a proper subset of its union with a disjoint nonempty class. (Contributed by NM, 15-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjpss | |- ( ( ( A i^i B ) = (/) /\ B =/= (/) ) -> A C. ( A u. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | |- B C_ B |
|
| 2 | 1 | biantru | |- ( B C_ A <-> ( B C_ A /\ B C_ B ) ) |
| 3 | ssin | |- ( ( B C_ A /\ B C_ B ) <-> B C_ ( A i^i B ) ) |
|
| 4 | 2 3 | bitri | |- ( B C_ A <-> B C_ ( A i^i B ) ) |
| 5 | sseq2 | |- ( ( A i^i B ) = (/) -> ( B C_ ( A i^i B ) <-> B C_ (/) ) ) |
|
| 6 | 4 5 | bitrid | |- ( ( A i^i B ) = (/) -> ( B C_ A <-> B C_ (/) ) ) |
| 7 | ss0 | |- ( B C_ (/) -> B = (/) ) |
|
| 8 | 6 7 | biimtrdi | |- ( ( A i^i B ) = (/) -> ( B C_ A -> B = (/) ) ) |
| 9 | 8 | necon3ad | |- ( ( A i^i B ) = (/) -> ( B =/= (/) -> -. B C_ A ) ) |
| 10 | 9 | imp | |- ( ( ( A i^i B ) = (/) /\ B =/= (/) ) -> -. B C_ A ) |
| 11 | nsspssun | |- ( -. B C_ A <-> A C. ( B u. A ) ) |
|
| 12 | uncom | |- ( B u. A ) = ( A u. B ) |
|
| 13 | 12 | psseq2i | |- ( A C. ( B u. A ) <-> A C. ( A u. B ) ) |
| 14 | 11 13 | bitri | |- ( -. B C_ A <-> A C. ( A u. B ) ) |
| 15 | 10 14 | sylib | |- ( ( ( A i^i B ) = (/) /\ B =/= (/) ) -> A C. ( A u. B ) ) |