This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-2 . Remove hypotheses from isf32lem10 . (Contributed by Stefan O'Rear, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isf32lem11 | |- ( ( G e. V /\ ( F : _om --> ~P G /\ A. b e. _om ( F ` suc b ) C_ ( F ` b ) /\ -. |^| ran F e. ran F ) ) -> _om ~<_* G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( F : _om --> ~P G /\ A. b e. _om ( F ` suc b ) C_ ( F ` b ) /\ -. |^| ran F e. ran F ) -> F : _om --> ~P G ) |
|
| 2 | suceq | |- ( b = c -> suc b = suc c ) |
|
| 3 | 2 | fveq2d | |- ( b = c -> ( F ` suc b ) = ( F ` suc c ) ) |
| 4 | fveq2 | |- ( b = c -> ( F ` b ) = ( F ` c ) ) |
|
| 5 | 3 4 | sseq12d | |- ( b = c -> ( ( F ` suc b ) C_ ( F ` b ) <-> ( F ` suc c ) C_ ( F ` c ) ) ) |
| 6 | 5 | cbvralvw | |- ( A. b e. _om ( F ` suc b ) C_ ( F ` b ) <-> A. c e. _om ( F ` suc c ) C_ ( F ` c ) ) |
| 7 | 6 | biimpi | |- ( A. b e. _om ( F ` suc b ) C_ ( F ` b ) -> A. c e. _om ( F ` suc c ) C_ ( F ` c ) ) |
| 8 | 7 | 3ad2ant2 | |- ( ( F : _om --> ~P G /\ A. b e. _om ( F ` suc b ) C_ ( F ` b ) /\ -. |^| ran F e. ran F ) -> A. c e. _om ( F ` suc c ) C_ ( F ` c ) ) |
| 9 | simp3 | |- ( ( F : _om --> ~P G /\ A. b e. _om ( F ` suc b ) C_ ( F ` b ) /\ -. |^| ran F e. ran F ) -> -. |^| ran F e. ran F ) |
|
| 10 | suceq | |- ( e = d -> suc e = suc d ) |
|
| 11 | 10 | fveq2d | |- ( e = d -> ( F ` suc e ) = ( F ` suc d ) ) |
| 12 | fveq2 | |- ( e = d -> ( F ` e ) = ( F ` d ) ) |
|
| 13 | 11 12 | psseq12d | |- ( e = d -> ( ( F ` suc e ) C. ( F ` e ) <-> ( F ` suc d ) C. ( F ` d ) ) ) |
| 14 | 13 | cbvrabv | |- { e e. _om | ( F ` suc e ) C. ( F ` e ) } = { d e. _om | ( F ` suc d ) C. ( F ` d ) } |
| 15 | eqid | |- ( f e. _om |-> ( iota_ g e. { e e. _om | ( F ` suc e ) C. ( F ` e ) } ( g i^i { e e. _om | ( F ` suc e ) C. ( F ` e ) } ) ~~ f ) ) = ( f e. _om |-> ( iota_ g e. { e e. _om | ( F ` suc e ) C. ( F ` e ) } ( g i^i { e e. _om | ( F ` suc e ) C. ( F ` e ) } ) ~~ f ) ) |
|
| 16 | eqid | |- ( ( h e. { e e. _om | ( F ` suc e ) C. ( F ` e ) } |-> ( ( F ` h ) \ ( F ` suc h ) ) ) o. ( f e. _om |-> ( iota_ g e. { e e. _om | ( F ` suc e ) C. ( F ` e ) } ( g i^i { e e. _om | ( F ` suc e ) C. ( F ` e ) } ) ~~ f ) ) ) = ( ( h e. { e e. _om | ( F ` suc e ) C. ( F ` e ) } |-> ( ( F ` h ) \ ( F ` suc h ) ) ) o. ( f e. _om |-> ( iota_ g e. { e e. _om | ( F ` suc e ) C. ( F ` e ) } ( g i^i { e e. _om | ( F ` suc e ) C. ( F ` e ) } ) ~~ f ) ) ) |
|
| 17 | eqid | |- ( k e. G |-> ( iota l ( l e. _om /\ k e. ( ( ( h e. { e e. _om | ( F ` suc e ) C. ( F ` e ) } |-> ( ( F ` h ) \ ( F ` suc h ) ) ) o. ( f e. _om |-> ( iota_ g e. { e e. _om | ( F ` suc e ) C. ( F ` e ) } ( g i^i { e e. _om | ( F ` suc e ) C. ( F ` e ) } ) ~~ f ) ) ) ` l ) ) ) ) = ( k e. G |-> ( iota l ( l e. _om /\ k e. ( ( ( h e. { e e. _om | ( F ` suc e ) C. ( F ` e ) } |-> ( ( F ` h ) \ ( F ` suc h ) ) ) o. ( f e. _om |-> ( iota_ g e. { e e. _om | ( F ` suc e ) C. ( F ` e ) } ( g i^i { e e. _om | ( F ` suc e ) C. ( F ` e ) } ) ~~ f ) ) ) ` l ) ) ) ) |
|
| 18 | 1 8 9 14 15 16 17 | isf32lem10 | |- ( ( F : _om --> ~P G /\ A. b e. _om ( F ` suc b ) C_ ( F ` b ) /\ -. |^| ran F e. ran F ) -> ( G e. V -> _om ~<_* G ) ) |
| 19 | 18 | impcom | |- ( ( G e. V /\ ( F : _om --> ~P G /\ A. b e. _om ( F ` suc b ) C_ ( F ` b ) /\ -. |^| ran F e. ran F ) ) -> _om ~<_* G ) |