This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If G e. ( Magma i^i ExId ) , then it has a left and right identity element that belongs to the range of the operation. (Contributed by FL, 12-Dec-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isexid2.1 | |- X = ran G |
|
| Assertion | isexid2 | |- ( G e. ( Magma i^i ExId ) -> E. u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isexid2.1 | |- X = ran G |
|
| 2 | rngopidOLD | |- ( G e. ( Magma i^i ExId ) -> ran G = dom dom G ) |
|
| 3 | elin | |- ( G e. ( Magma i^i ExId ) <-> ( G e. Magma /\ G e. ExId ) ) |
|
| 4 | eqid | |- dom dom G = dom dom G |
|
| 5 | 4 | isexid | |- ( G e. ExId -> ( G e. ExId <-> E. u e. dom dom G A. x e. dom dom G ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |
| 6 | 5 | ibi | |- ( G e. ExId -> E. u e. dom dom G A. x e. dom dom G ( ( u G x ) = x /\ ( x G u ) = x ) ) |
| 7 | 6 | a1d | |- ( G e. ExId -> ( X = dom dom G -> E. u e. dom dom G A. x e. dom dom G ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |
| 8 | 7 | adantl | |- ( ( G e. Magma /\ G e. ExId ) -> ( X = dom dom G -> E. u e. dom dom G A. x e. dom dom G ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |
| 9 | 3 8 | sylbi | |- ( G e. ( Magma i^i ExId ) -> ( X = dom dom G -> E. u e. dom dom G A. x e. dom dom G ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |
| 10 | eqeq2 | |- ( ran G = dom dom G -> ( X = ran G <-> X = dom dom G ) ) |
|
| 11 | raleq | |- ( ran G = dom dom G -> ( A. x e. ran G ( ( u G x ) = x /\ ( x G u ) = x ) <-> A. x e. dom dom G ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |
|
| 12 | 11 | rexeqbi1dv | |- ( ran G = dom dom G -> ( E. u e. ran G A. x e. ran G ( ( u G x ) = x /\ ( x G u ) = x ) <-> E. u e. dom dom G A. x e. dom dom G ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |
| 13 | 10 12 | imbi12d | |- ( ran G = dom dom G -> ( ( X = ran G -> E. u e. ran G A. x e. ran G ( ( u G x ) = x /\ ( x G u ) = x ) ) <-> ( X = dom dom G -> E. u e. dom dom G A. x e. dom dom G ( ( u G x ) = x /\ ( x G u ) = x ) ) ) ) |
| 14 | 9 13 | imbitrrid | |- ( ran G = dom dom G -> ( G e. ( Magma i^i ExId ) -> ( X = ran G -> E. u e. ran G A. x e. ran G ( ( u G x ) = x /\ ( x G u ) = x ) ) ) ) |
| 15 | 2 14 | mpcom | |- ( G e. ( Magma i^i ExId ) -> ( X = ran G -> E. u e. ran G A. x e. ran G ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |
| 16 | 15 | com12 | |- ( X = ran G -> ( G e. ( Magma i^i ExId ) -> E. u e. ran G A. x e. ran G ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |
| 17 | raleq | |- ( X = ran G -> ( A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) <-> A. x e. ran G ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |
|
| 18 | 17 | rexeqbi1dv | |- ( X = ran G -> ( E. u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) <-> E. u e. ran G A. x e. ran G ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |
| 19 | 16 18 | sylibrd | |- ( X = ran G -> ( G e. ( Magma i^i ExId ) -> E. u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |
| 20 | 1 19 | ax-mp | |- ( G e. ( Magma i^i ExId ) -> E. u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) |