This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If G e. ( Magma i^i ExId ) , then it has a left and right identity element that belongs to the range of the operation. (Contributed by FL, 12-Dec-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isexid2.1 | ⊢ 𝑋 = ran 𝐺 | |
| Assertion | isexid2 | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isexid2.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | rngopidOLD | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺 ) | |
| 3 | elin | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) ↔ ( 𝐺 ∈ Magma ∧ 𝐺 ∈ ExId ) ) | |
| 4 | eqid | ⊢ dom dom 𝐺 = dom dom 𝐺 | |
| 5 | 4 | isexid | ⊢ ( 𝐺 ∈ ExId → ( 𝐺 ∈ ExId ↔ ∃ 𝑢 ∈ dom dom 𝐺 ∀ 𝑥 ∈ dom dom 𝐺 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) |
| 6 | 5 | ibi | ⊢ ( 𝐺 ∈ ExId → ∃ 𝑢 ∈ dom dom 𝐺 ∀ 𝑥 ∈ dom dom 𝐺 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) |
| 7 | 6 | a1d | ⊢ ( 𝐺 ∈ ExId → ( 𝑋 = dom dom 𝐺 → ∃ 𝑢 ∈ dom dom 𝐺 ∀ 𝑥 ∈ dom dom 𝐺 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐺 ∈ Magma ∧ 𝐺 ∈ ExId ) → ( 𝑋 = dom dom 𝐺 → ∃ 𝑢 ∈ dom dom 𝐺 ∀ 𝑥 ∈ dom dom 𝐺 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) |
| 9 | 3 8 | sylbi | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ( 𝑋 = dom dom 𝐺 → ∃ 𝑢 ∈ dom dom 𝐺 ∀ 𝑥 ∈ dom dom 𝐺 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) |
| 10 | eqeq2 | ⊢ ( ran 𝐺 = dom dom 𝐺 → ( 𝑋 = ran 𝐺 ↔ 𝑋 = dom dom 𝐺 ) ) | |
| 11 | raleq | ⊢ ( ran 𝐺 = dom dom 𝐺 → ( ∀ 𝑥 ∈ ran 𝐺 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ dom dom 𝐺 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) | |
| 12 | 11 | rexeqbi1dv | ⊢ ( ran 𝐺 = dom dom 𝐺 → ( ∃ 𝑢 ∈ ran 𝐺 ∀ 𝑥 ∈ ran 𝐺 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ↔ ∃ 𝑢 ∈ dom dom 𝐺 ∀ 𝑥 ∈ dom dom 𝐺 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) |
| 13 | 10 12 | imbi12d | ⊢ ( ran 𝐺 = dom dom 𝐺 → ( ( 𝑋 = ran 𝐺 → ∃ 𝑢 ∈ ran 𝐺 ∀ 𝑥 ∈ ran 𝐺 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ↔ ( 𝑋 = dom dom 𝐺 → ∃ 𝑢 ∈ dom dom 𝐺 ∀ 𝑥 ∈ dom dom 𝐺 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) ) |
| 14 | 9 13 | imbitrrid | ⊢ ( ran 𝐺 = dom dom 𝐺 → ( 𝐺 ∈ ( Magma ∩ ExId ) → ( 𝑋 = ran 𝐺 → ∃ 𝑢 ∈ ran 𝐺 ∀ 𝑥 ∈ ran 𝐺 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) ) |
| 15 | 2 14 | mpcom | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ( 𝑋 = ran 𝐺 → ∃ 𝑢 ∈ ran 𝐺 ∀ 𝑥 ∈ ran 𝐺 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) |
| 16 | 15 | com12 | ⊢ ( 𝑋 = ran 𝐺 → ( 𝐺 ∈ ( Magma ∩ ExId ) → ∃ 𝑢 ∈ ran 𝐺 ∀ 𝑥 ∈ ran 𝐺 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) |
| 17 | raleq | ⊢ ( 𝑋 = ran 𝐺 → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ ran 𝐺 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) | |
| 18 | 17 | rexeqbi1dv | ⊢ ( 𝑋 = ran 𝐺 → ( ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ↔ ∃ 𝑢 ∈ ran 𝐺 ∀ 𝑥 ∈ ran 𝐺 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) |
| 19 | 16 18 | sylibrd | ⊢ ( 𝑋 = ran 𝐺 → ( 𝐺 ∈ ( Magma ∩ ExId ) → ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) ) |
| 20 | 1 19 | ax-mp | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) |