This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for a reflexive, symmetric and transitive binary relation to be an equivalence relation over a class V . (Contributed by AV, 11-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brinxper.r | |- ( x e. V -> x .~ x ) |
|
| brinxper.s | |- ( x e. V -> ( x .~ y -> y .~ x ) ) |
||
| brinxper.t | |- ( x e. V -> ( ( x .~ y /\ y .~ z ) -> x .~ z ) ) |
||
| Assertion | brinxper | |- ( .~ i^i ( V X. V ) ) Er V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brinxper.r | |- ( x e. V -> x .~ x ) |
|
| 2 | brinxper.s | |- ( x e. V -> ( x .~ y -> y .~ x ) ) |
|
| 3 | brinxper.t | |- ( x e. V -> ( ( x .~ y /\ y .~ z ) -> x .~ z ) ) |
|
| 4 | relinxp | |- Rel ( .~ i^i ( V X. V ) ) |
|
| 5 | brxp | |- ( x ( V X. V ) y <-> ( x e. V /\ y e. V ) ) |
|
| 6 | 2 | adantr | |- ( ( x e. V /\ y e. V ) -> ( x .~ y -> y .~ x ) ) |
| 7 | ancom | |- ( ( x e. V /\ y e. V ) <-> ( y e. V /\ x e. V ) ) |
|
| 8 | brxp | |- ( y ( V X. V ) x <-> ( y e. V /\ x e. V ) ) |
|
| 9 | 7 8 | sylbb2 | |- ( ( x e. V /\ y e. V ) -> y ( V X. V ) x ) |
| 10 | 6 9 | jctird | |- ( ( x e. V /\ y e. V ) -> ( x .~ y -> ( y .~ x /\ y ( V X. V ) x ) ) ) |
| 11 | 5 10 | sylbi | |- ( x ( V X. V ) y -> ( x .~ y -> ( y .~ x /\ y ( V X. V ) x ) ) ) |
| 12 | 11 | impcom | |- ( ( x .~ y /\ x ( V X. V ) y ) -> ( y .~ x /\ y ( V X. V ) x ) ) |
| 13 | brin | |- ( x ( .~ i^i ( V X. V ) ) y <-> ( x .~ y /\ x ( V X. V ) y ) ) |
|
| 14 | brin | |- ( y ( .~ i^i ( V X. V ) ) x <-> ( y .~ x /\ y ( V X. V ) x ) ) |
|
| 15 | 12 13 14 | 3imtr4i | |- ( x ( .~ i^i ( V X. V ) ) y -> y ( .~ i^i ( V X. V ) ) x ) |
| 16 | brin | |- ( y ( .~ i^i ( V X. V ) ) z <-> ( y .~ z /\ y ( V X. V ) z ) ) |
|
| 17 | brxp | |- ( y ( V X. V ) z <-> ( y e. V /\ z e. V ) ) |
|
| 18 | 3 | expd | |- ( x e. V -> ( x .~ y -> ( y .~ z -> x .~ z ) ) ) |
| 19 | 18 | adantr | |- ( ( x e. V /\ y e. V ) -> ( x .~ y -> ( y .~ z -> x .~ z ) ) ) |
| 20 | 19 | impcom | |- ( ( x .~ y /\ ( x e. V /\ y e. V ) ) -> ( y .~ z -> x .~ z ) ) |
| 21 | 20 | com12 | |- ( y .~ z -> ( ( x .~ y /\ ( x e. V /\ y e. V ) ) -> x .~ z ) ) |
| 22 | 21 | adantl | |- ( ( ( y e. V /\ z e. V ) /\ y .~ z ) -> ( ( x .~ y /\ ( x e. V /\ y e. V ) ) -> x .~ z ) ) |
| 23 | 22 | imp | |- ( ( ( ( y e. V /\ z e. V ) /\ y .~ z ) /\ ( x .~ y /\ ( x e. V /\ y e. V ) ) ) -> x .~ z ) |
| 24 | simplr | |- ( ( ( y e. V /\ z e. V ) /\ y .~ z ) -> z e. V ) |
|
| 25 | simprl | |- ( ( x .~ y /\ ( x e. V /\ y e. V ) ) -> x e. V ) |
|
| 26 | 24 25 | anim12ci | |- ( ( ( ( y e. V /\ z e. V ) /\ y .~ z ) /\ ( x .~ y /\ ( x e. V /\ y e. V ) ) ) -> ( x e. V /\ z e. V ) ) |
| 27 | 23 26 | jca | |- ( ( ( ( y e. V /\ z e. V ) /\ y .~ z ) /\ ( x .~ y /\ ( x e. V /\ y e. V ) ) ) -> ( x .~ z /\ ( x e. V /\ z e. V ) ) ) |
| 28 | 27 | exp31 | |- ( ( y e. V /\ z e. V ) -> ( y .~ z -> ( ( x .~ y /\ ( x e. V /\ y e. V ) ) -> ( x .~ z /\ ( x e. V /\ z e. V ) ) ) ) ) |
| 29 | 17 28 | sylbi | |- ( y ( V X. V ) z -> ( y .~ z -> ( ( x .~ y /\ ( x e. V /\ y e. V ) ) -> ( x .~ z /\ ( x e. V /\ z e. V ) ) ) ) ) |
| 30 | 29 | impcom | |- ( ( y .~ z /\ y ( V X. V ) z ) -> ( ( x .~ y /\ ( x e. V /\ y e. V ) ) -> ( x .~ z /\ ( x e. V /\ z e. V ) ) ) ) |
| 31 | 5 | anbi2i | |- ( ( x .~ y /\ x ( V X. V ) y ) <-> ( x .~ y /\ ( x e. V /\ y e. V ) ) ) |
| 32 | brxp | |- ( x ( V X. V ) z <-> ( x e. V /\ z e. V ) ) |
|
| 33 | 32 | anbi2i | |- ( ( x .~ z /\ x ( V X. V ) z ) <-> ( x .~ z /\ ( x e. V /\ z e. V ) ) ) |
| 34 | 30 31 33 | 3imtr4g | |- ( ( y .~ z /\ y ( V X. V ) z ) -> ( ( x .~ y /\ x ( V X. V ) y ) -> ( x .~ z /\ x ( V X. V ) z ) ) ) |
| 35 | 16 34 | sylbi | |- ( y ( .~ i^i ( V X. V ) ) z -> ( ( x .~ y /\ x ( V X. V ) y ) -> ( x .~ z /\ x ( V X. V ) z ) ) ) |
| 36 | 35 | com12 | |- ( ( x .~ y /\ x ( V X. V ) y ) -> ( y ( .~ i^i ( V X. V ) ) z -> ( x .~ z /\ x ( V X. V ) z ) ) ) |
| 37 | 13 36 | sylbi | |- ( x ( .~ i^i ( V X. V ) ) y -> ( y ( .~ i^i ( V X. V ) ) z -> ( x .~ z /\ x ( V X. V ) z ) ) ) |
| 38 | 37 | imp | |- ( ( x ( .~ i^i ( V X. V ) ) y /\ y ( .~ i^i ( V X. V ) ) z ) -> ( x .~ z /\ x ( V X. V ) z ) ) |
| 39 | brin | |- ( x ( .~ i^i ( V X. V ) ) z <-> ( x .~ z /\ x ( V X. V ) z ) ) |
|
| 40 | 38 39 | sylibr | |- ( ( x ( .~ i^i ( V X. V ) ) y /\ y ( .~ i^i ( V X. V ) ) z ) -> x ( .~ i^i ( V X. V ) ) z ) |
| 41 | id | |- ( x e. V -> x e. V ) |
|
| 42 | brxp | |- ( x ( V X. V ) x <-> ( x e. V /\ x e. V ) ) |
|
| 43 | 41 41 42 | sylanbrc | |- ( x e. V -> x ( V X. V ) x ) |
| 44 | 1 43 | jca | |- ( x e. V -> ( x .~ x /\ x ( V X. V ) x ) ) |
| 45 | 42 | simplbi | |- ( x ( V X. V ) x -> x e. V ) |
| 46 | 45 | adantl | |- ( ( x .~ x /\ x ( V X. V ) x ) -> x e. V ) |
| 47 | 44 46 | impbii | |- ( x e. V <-> ( x .~ x /\ x ( V X. V ) x ) ) |
| 48 | brin | |- ( x ( .~ i^i ( V X. V ) ) x <-> ( x .~ x /\ x ( V X. V ) x ) ) |
|
| 49 | 47 48 | bitr4i | |- ( x e. V <-> x ( .~ i^i ( V X. V ) ) x ) |
| 50 | 4 15 40 49 | iseri | |- ( .~ i^i ( V X. V ) ) Er V |