This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted universal quantification on a class difference with a singleton in terms of an implication. (Contributed by Alexander van der Vekens, 26-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | raldifsnb | |- ( A. x e. A ( x =/= Y -> ph ) <-> A. x e. ( A \ { Y } ) ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velsn | |- ( x e. { Y } <-> x = Y ) |
|
| 2 | nnel | |- ( -. x e/ { Y } <-> x e. { Y } ) |
|
| 3 | nne | |- ( -. x =/= Y <-> x = Y ) |
|
| 4 | 1 2 3 | 3bitr4ri | |- ( -. x =/= Y <-> -. x e/ { Y } ) |
| 5 | 4 | con4bii | |- ( x =/= Y <-> x e/ { Y } ) |
| 6 | 5 | imbi1i | |- ( ( x =/= Y -> ph ) <-> ( x e/ { Y } -> ph ) ) |
| 7 | 6 | ralbii | |- ( A. x e. A ( x =/= Y -> ph ) <-> A. x e. A ( x e/ { Y } -> ph ) ) |
| 8 | raldifb | |- ( A. x e. A ( x e/ { Y } -> ph ) <-> A. x e. ( A \ { Y } ) ph ) |
|
| 9 | 7 8 | bitri | |- ( A. x e. A ( x =/= Y -> ph ) <-> A. x e. ( A \ { Y } ) ph ) |