This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A device to add commutativity to various sorts of rings. (Contributed by FL, 6-Sep-2009) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iscom2 | |- ( ( G e. A /\ H e. B ) -> ( <. G , H >. e. Com2 <-> A. a e. ran G A. b e. ran G ( a H b ) = ( b H a ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-com2 | |- Com2 = { <. x , y >. | A. a e. ran x A. b e. ran x ( a y b ) = ( b y a ) } |
|
| 2 | 1 | a1i | |- ( ( G e. A /\ H e. B ) -> Com2 = { <. x , y >. | A. a e. ran x A. b e. ran x ( a y b ) = ( b y a ) } ) |
| 3 | 2 | eleq2d | |- ( ( G e. A /\ H e. B ) -> ( <. G , H >. e. Com2 <-> <. G , H >. e. { <. x , y >. | A. a e. ran x A. b e. ran x ( a y b ) = ( b y a ) } ) ) |
| 4 | rneq | |- ( x = G -> ran x = ran G ) |
|
| 5 | 4 | raleqdv | |- ( x = G -> ( A. b e. ran x ( a y b ) = ( b y a ) <-> A. b e. ran G ( a y b ) = ( b y a ) ) ) |
| 6 | 4 5 | raleqbidv | |- ( x = G -> ( A. a e. ran x A. b e. ran x ( a y b ) = ( b y a ) <-> A. a e. ran G A. b e. ran G ( a y b ) = ( b y a ) ) ) |
| 7 | oveq | |- ( y = H -> ( a y b ) = ( a H b ) ) |
|
| 8 | oveq | |- ( y = H -> ( b y a ) = ( b H a ) ) |
|
| 9 | 7 8 | eqeq12d | |- ( y = H -> ( ( a y b ) = ( b y a ) <-> ( a H b ) = ( b H a ) ) ) |
| 10 | 9 | 2ralbidv | |- ( y = H -> ( A. a e. ran G A. b e. ran G ( a y b ) = ( b y a ) <-> A. a e. ran G A. b e. ran G ( a H b ) = ( b H a ) ) ) |
| 11 | 6 10 | opelopabg | |- ( ( G e. A /\ H e. B ) -> ( <. G , H >. e. { <. x , y >. | A. a e. ran x A. b e. ran x ( a y b ) = ( b y a ) } <-> A. a e. ran G A. b e. ran G ( a H b ) = ( b H a ) ) ) |
| 12 | 3 11 | bitrd | |- ( ( G e. A /\ H e. B ) -> ( <. G , H >. e. Com2 <-> A. a e. ran G A. b e. ran G ( a H b ) = ( b H a ) ) ) |