This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An Abelian group operation is commutative. (Contributed by NM, 2-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ablcom.1 | |- X = ran G |
|
| Assertion | ablocom | |- ( ( G e. AbelOp /\ A e. X /\ B e. X ) -> ( A G B ) = ( B G A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcom.1 | |- X = ran G |
|
| 2 | 1 | isablo | |- ( G e. AbelOp <-> ( G e. GrpOp /\ A. x e. X A. y e. X ( x G y ) = ( y G x ) ) ) |
| 3 | 2 | simprbi | |- ( G e. AbelOp -> A. x e. X A. y e. X ( x G y ) = ( y G x ) ) |
| 4 | oveq1 | |- ( x = A -> ( x G y ) = ( A G y ) ) |
|
| 5 | oveq2 | |- ( x = A -> ( y G x ) = ( y G A ) ) |
|
| 6 | 4 5 | eqeq12d | |- ( x = A -> ( ( x G y ) = ( y G x ) <-> ( A G y ) = ( y G A ) ) ) |
| 7 | oveq2 | |- ( y = B -> ( A G y ) = ( A G B ) ) |
|
| 8 | oveq1 | |- ( y = B -> ( y G A ) = ( B G A ) ) |
|
| 9 | 7 8 | eqeq12d | |- ( y = B -> ( ( A G y ) = ( y G A ) <-> ( A G B ) = ( B G A ) ) ) |
| 10 | 6 9 | rspc2v | |- ( ( A e. X /\ B e. X ) -> ( A. x e. X A. y e. X ( x G y ) = ( y G x ) -> ( A G B ) = ( B G A ) ) ) |
| 11 | 3 10 | syl5com | |- ( G e. AbelOp -> ( ( A e. X /\ B e. X ) -> ( A G B ) = ( B G A ) ) ) |
| 12 | 11 | 3impib | |- ( ( G e. AbelOp /\ A e. X /\ B e. X ) -> ( A G B ) = ( B G A ) ) |