This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The convergence of a Cauchy filter in a complete metric space. (Contributed by Mario Carneiro, 14-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iscmet.1 | |- J = ( MetOpen ` D ) |
|
| Assertion | cmetcvg | |- ( ( D e. ( CMet ` X ) /\ F e. ( CauFil ` D ) ) -> ( J fLim F ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmet.1 | |- J = ( MetOpen ` D ) |
|
| 2 | 1 | iscmet | |- ( D e. ( CMet ` X ) <-> ( D e. ( Met ` X ) /\ A. f e. ( CauFil ` D ) ( J fLim f ) =/= (/) ) ) |
| 3 | 2 | simprbi | |- ( D e. ( CMet ` X ) -> A. f e. ( CauFil ` D ) ( J fLim f ) =/= (/) ) |
| 4 | oveq2 | |- ( f = F -> ( J fLim f ) = ( J fLim F ) ) |
|
| 5 | 4 | neeq1d | |- ( f = F -> ( ( J fLim f ) =/= (/) <-> ( J fLim F ) =/= (/) ) ) |
| 6 | 5 | rspccva | |- ( ( A. f e. ( CauFil ` D ) ( J fLim f ) =/= (/) /\ F e. ( CauFil ` D ) ) -> ( J fLim F ) =/= (/) ) |
| 7 | 3 6 | sylan | |- ( ( D e. ( CMet ` X ) /\ F e. ( CauFil ` D ) ) -> ( J fLim F ) =/= (/) ) |