This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of complete metrics on a given set. (Contributed by Mario Carneiro, 1-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cmet | |- CMet = ( x e. _V |-> { d e. ( Met ` x ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccmet | |- CMet |
|
| 1 | vx | |- x |
|
| 2 | cvv | |- _V |
|
| 3 | vd | |- d |
|
| 4 | cmet | |- Met |
|
| 5 | 1 | cv | |- x |
| 6 | 5 4 | cfv | |- ( Met ` x ) |
| 7 | vf | |- f |
|
| 8 | ccfil | |- CauFil |
|
| 9 | 3 | cv | |- d |
| 10 | 9 8 | cfv | |- ( CauFil ` d ) |
| 11 | cmopn | |- MetOpen |
|
| 12 | 9 11 | cfv | |- ( MetOpen ` d ) |
| 13 | cflim | |- fLim |
|
| 14 | 7 | cv | |- f |
| 15 | 12 14 13 | co | |- ( ( MetOpen ` d ) fLim f ) |
| 16 | c0 | |- (/) |
|
| 17 | 15 16 | wne | |- ( ( MetOpen ` d ) fLim f ) =/= (/) |
| 18 | 17 7 10 | wral | |- A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) |
| 19 | 18 3 6 | crab | |- { d e. ( Met ` x ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } |
| 20 | 1 2 19 | cmpt | |- ( x e. _V |-> { d e. ( Met ` x ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } ) |
| 21 | 0 20 | wceq | |- CMet = ( x e. _V |-> { d e. ( Met ` x ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } ) |