This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A metric with a Cauchy sequence cannot be empty. (Contributed by NM, 19-Dec-2006) (Revised by Mario Carneiro, 24-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | caun0 | |- ( ( D e. ( *Met ` X ) /\ F e. ( Cau ` D ) ) -> X =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1rp | |- 1 e. RR+ |
|
| 2 | 1 | ne0ii | |- RR+ =/= (/) |
| 3 | iscau2 | |- ( D e. ( *Met ` X ) -> ( F e. ( Cau ` D ) <-> ( F e. ( X ^pm CC ) /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D ( F ` j ) ) < x ) ) ) ) |
|
| 4 | 3 | simplbda | |- ( ( D e. ( *Met ` X ) /\ F e. ( Cau ` D ) ) -> A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D ( F ` j ) ) < x ) ) |
| 5 | r19.2z | |- ( ( RR+ =/= (/) /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D ( F ` j ) ) < x ) ) -> E. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D ( F ` j ) ) < x ) ) |
|
| 6 | 2 4 5 | sylancr | |- ( ( D e. ( *Met ` X ) /\ F e. ( Cau ` D ) ) -> E. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D ( F ` j ) ) < x ) ) |
| 7 | uzid | |- ( j e. ZZ -> j e. ( ZZ>= ` j ) ) |
|
| 8 | ne0i | |- ( j e. ( ZZ>= ` j ) -> ( ZZ>= ` j ) =/= (/) ) |
|
| 9 | r19.2z | |- ( ( ( ZZ>= ` j ) =/= (/) /\ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D ( F ` j ) ) < x ) ) -> E. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D ( F ` j ) ) < x ) ) |
|
| 10 | 9 | ex | |- ( ( ZZ>= ` j ) =/= (/) -> ( A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D ( F ` j ) ) < x ) -> E. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D ( F ` j ) ) < x ) ) ) |
| 11 | 7 8 10 | 3syl | |- ( j e. ZZ -> ( A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D ( F ` j ) ) < x ) -> E. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D ( F ` j ) ) < x ) ) ) |
| 12 | ne0i | |- ( ( F ` k ) e. X -> X =/= (/) ) |
|
| 13 | 12 | 3ad2ant2 | |- ( ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D ( F ` j ) ) < x ) -> X =/= (/) ) |
| 14 | 13 | rexlimivw | |- ( E. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D ( F ` j ) ) < x ) -> X =/= (/) ) |
| 15 | 11 14 | syl6 | |- ( j e. ZZ -> ( A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D ( F ` j ) ) < x ) -> X =/= (/) ) ) |
| 16 | 15 | rexlimiv | |- ( E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D ( F ` j ) ) < x ) -> X =/= (/) ) |
| 17 | 16 | rexlimivw | |- ( E. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D ( F ` j ) ) < x ) -> X =/= (/) ) |
| 18 | 6 17 | syl | |- ( ( D e. ( *Met ` X ) /\ F e. ( Cau ` D ) ) -> X =/= (/) ) |