This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product of a pre-Hilbert space is linear in its left argument. (Contributed by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | |- F = ( Scalar ` W ) |
|
| phllmhm.h | |- ., = ( .i ` W ) |
||
| phllmhm.v | |- V = ( Base ` W ) |
||
| phllmhm.g | |- G = ( x e. V |-> ( x ., A ) ) |
||
| Assertion | phllmhm | |- ( ( W e. PreHil /\ A e. V ) -> G e. ( W LMHom ( ringLMod ` F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | |- F = ( Scalar ` W ) |
|
| 2 | phllmhm.h | |- ., = ( .i ` W ) |
|
| 3 | phllmhm.v | |- V = ( Base ` W ) |
|
| 4 | phllmhm.g | |- G = ( x e. V |-> ( x ., A ) ) |
|
| 5 | eqid | |- ( 0g ` W ) = ( 0g ` W ) |
|
| 6 | eqid | |- ( *r ` F ) = ( *r ` F ) |
|
| 7 | eqid | |- ( 0g ` F ) = ( 0g ` F ) |
|
| 8 | 3 1 2 5 6 7 | isphl | |- ( W e. PreHil <-> ( W e. LVec /\ F e. *Ring /\ A. y e. V ( ( x e. V |-> ( x ., y ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( y ., y ) = ( 0g ` F ) -> y = ( 0g ` W ) ) /\ A. x e. V ( ( *r ` F ) ` ( y ., x ) ) = ( x ., y ) ) ) ) |
| 9 | 8 | simp3bi | |- ( W e. PreHil -> A. y e. V ( ( x e. V |-> ( x ., y ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( y ., y ) = ( 0g ` F ) -> y = ( 0g ` W ) ) /\ A. x e. V ( ( *r ` F ) ` ( y ., x ) ) = ( x ., y ) ) ) |
| 10 | simp1 | |- ( ( ( x e. V |-> ( x ., y ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( y ., y ) = ( 0g ` F ) -> y = ( 0g ` W ) ) /\ A. x e. V ( ( *r ` F ) ` ( y ., x ) ) = ( x ., y ) ) -> ( x e. V |-> ( x ., y ) ) e. ( W LMHom ( ringLMod ` F ) ) ) |
|
| 11 | 10 | ralimi | |- ( A. y e. V ( ( x e. V |-> ( x ., y ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( y ., y ) = ( 0g ` F ) -> y = ( 0g ` W ) ) /\ A. x e. V ( ( *r ` F ) ` ( y ., x ) ) = ( x ., y ) ) -> A. y e. V ( x e. V |-> ( x ., y ) ) e. ( W LMHom ( ringLMod ` F ) ) ) |
| 12 | 9 11 | syl | |- ( W e. PreHil -> A. y e. V ( x e. V |-> ( x ., y ) ) e. ( W LMHom ( ringLMod ` F ) ) ) |
| 13 | oveq2 | |- ( y = A -> ( x ., y ) = ( x ., A ) ) |
|
| 14 | 13 | mpteq2dv | |- ( y = A -> ( x e. V |-> ( x ., y ) ) = ( x e. V |-> ( x ., A ) ) ) |
| 15 | 14 4 | eqtr4di | |- ( y = A -> ( x e. V |-> ( x ., y ) ) = G ) |
| 16 | 15 | eleq1d | |- ( y = A -> ( ( x e. V |-> ( x ., y ) ) e. ( W LMHom ( ringLMod ` F ) ) <-> G e. ( W LMHom ( ringLMod ` F ) ) ) ) |
| 17 | 16 | rspccva | |- ( ( A. y e. V ( x e. V |-> ( x ., y ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ A e. V ) -> G e. ( W LMHom ( ringLMod ` F ) ) ) |
| 18 | 12 17 | sylan | |- ( ( W e. PreHil /\ A e. V ) -> G e. ( W LMHom ( ringLMod ` F ) ) ) |