This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference between two vectors is zero iff they are equal. (Contributed by NM, 24-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvmeq0.1 | |- X = ( BaseSet ` U ) |
|
| nvmeq0.3 | |- M = ( -v ` U ) |
||
| nvmeq0.5 | |- Z = ( 0vec ` U ) |
||
| Assertion | nvmeq0 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A M B ) = Z <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvmeq0.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvmeq0.3 | |- M = ( -v ` U ) |
|
| 3 | nvmeq0.5 | |- Z = ( 0vec ` U ) |
|
| 4 | 1 2 | nvmcl | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A M B ) e. X ) |
| 5 | 4 | 3expb | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> ( A M B ) e. X ) |
| 6 | 1 3 | nvzcl | |- ( U e. NrmCVec -> Z e. X ) |
| 7 | 6 | adantr | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> Z e. X ) |
| 8 | simprr | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> B e. X ) |
|
| 9 | 5 7 8 | 3jca | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> ( ( A M B ) e. X /\ Z e. X /\ B e. X ) ) |
| 10 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 11 | 1 10 | nvrcan | |- ( ( U e. NrmCVec /\ ( ( A M B ) e. X /\ Z e. X /\ B e. X ) ) -> ( ( ( A M B ) ( +v ` U ) B ) = ( Z ( +v ` U ) B ) <-> ( A M B ) = Z ) ) |
| 12 | 9 11 | syldan | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> ( ( ( A M B ) ( +v ` U ) B ) = ( Z ( +v ` U ) B ) <-> ( A M B ) = Z ) ) |
| 13 | 12 | 3impb | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( A M B ) ( +v ` U ) B ) = ( Z ( +v ` U ) B ) <-> ( A M B ) = Z ) ) |
| 14 | 1 10 2 | nvnpcan | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A M B ) ( +v ` U ) B ) = A ) |
| 15 | 1 10 3 | nv0lid | |- ( ( U e. NrmCVec /\ B e. X ) -> ( Z ( +v ` U ) B ) = B ) |
| 16 | 15 | 3adant2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( Z ( +v ` U ) B ) = B ) |
| 17 | 14 16 | eqeq12d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( A M B ) ( +v ` U ) B ) = ( Z ( +v ` U ) B ) <-> A = B ) ) |
| 18 | 13 17 | bitr3d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A M B ) = Z <-> A = B ) ) |