This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The conjugate of the ring zero is zero. (Contributed by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srng0.i | |- .* = ( *r ` R ) |
|
| srng0.z | |- .0. = ( 0g ` R ) |
||
| Assertion | srng0 | |- ( R e. *Ring -> ( .* ` .0. ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srng0.i | |- .* = ( *r ` R ) |
|
| 2 | srng0.z | |- .0. = ( 0g ` R ) |
|
| 3 | srngring | |- ( R e. *Ring -> R e. Ring ) |
|
| 4 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 5 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 6 | 5 2 | grpidcl | |- ( R e. Grp -> .0. e. ( Base ` R ) ) |
| 7 | eqid | |- ( *rf ` R ) = ( *rf ` R ) |
|
| 8 | 5 1 7 | stafval | |- ( .0. e. ( Base ` R ) -> ( ( *rf ` R ) ` .0. ) = ( .* ` .0. ) ) |
| 9 | 3 4 6 8 | 4syl | |- ( R e. *Ring -> ( ( *rf ` R ) ` .0. ) = ( .* ` .0. ) ) |
| 10 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 11 | 10 7 | srngrhm | |- ( R e. *Ring -> ( *rf ` R ) e. ( R RingHom ( oppR ` R ) ) ) |
| 12 | rhmghm | |- ( ( *rf ` R ) e. ( R RingHom ( oppR ` R ) ) -> ( *rf ` R ) e. ( R GrpHom ( oppR ` R ) ) ) |
|
| 13 | 10 2 | oppr0 | |- .0. = ( 0g ` ( oppR ` R ) ) |
| 14 | 2 13 | ghmid | |- ( ( *rf ` R ) e. ( R GrpHom ( oppR ` R ) ) -> ( ( *rf ` R ) ` .0. ) = .0. ) |
| 15 | 11 12 14 | 3syl | |- ( R e. *Ring -> ( ( *rf ` R ) ` .0. ) = .0. ) |
| 16 | 9 15 | eqtr3d | |- ( R e. *Ring -> ( .* ` .0. ) = .0. ) |