This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.205 in WhiteheadRussell p. 190. (Contributed by Andrew Salmon, 11-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotasbc5 | |- ( E! x ph -> ( [. ( iota x ph ) / y ]. ps <-> E. y ( y = ( iota x ph ) /\ ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc5 | |- ( [. ( iota x ph ) / y ]. ps <-> E. y ( y = ( iota x ph ) /\ ps ) ) |
|
| 2 | 1 | a1i | |- ( E! x ph -> ( [. ( iota x ph ) / y ]. ps <-> E. y ( y = ( iota x ph ) /\ ps ) ) ) |