This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Smaller sets of extended reals have smaller suprema. (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxrss | |- ( ( A C_ B /\ B C_ RR* ) -> sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr | |- ( ( ( A C_ B /\ B C_ RR* ) /\ x e. A ) -> B C_ RR* ) |
|
| 2 | simpl | |- ( ( A C_ B /\ B C_ RR* ) -> A C_ B ) |
|
| 3 | 2 | sselda | |- ( ( ( A C_ B /\ B C_ RR* ) /\ x e. A ) -> x e. B ) |
| 4 | supxrub | |- ( ( B C_ RR* /\ x e. B ) -> x <_ sup ( B , RR* , < ) ) |
|
| 5 | 1 3 4 | syl2anc | |- ( ( ( A C_ B /\ B C_ RR* ) /\ x e. A ) -> x <_ sup ( B , RR* , < ) ) |
| 6 | 5 | ralrimiva | |- ( ( A C_ B /\ B C_ RR* ) -> A. x e. A x <_ sup ( B , RR* , < ) ) |
| 7 | sstr | |- ( ( A C_ B /\ B C_ RR* ) -> A C_ RR* ) |
|
| 8 | supxrcl | |- ( B C_ RR* -> sup ( B , RR* , < ) e. RR* ) |
|
| 9 | 8 | adantl | |- ( ( A C_ B /\ B C_ RR* ) -> sup ( B , RR* , < ) e. RR* ) |
| 10 | supxrleub | |- ( ( A C_ RR* /\ sup ( B , RR* , < ) e. RR* ) -> ( sup ( A , RR* , < ) <_ sup ( B , RR* , < ) <-> A. x e. A x <_ sup ( B , RR* , < ) ) ) |
|
| 11 | 7 9 10 | syl2anc | |- ( ( A C_ B /\ B C_ RR* ) -> ( sup ( A , RR* , < ) <_ sup ( B , RR* , < ) <-> A. x e. A x <_ sup ( B , RR* , < ) ) ) |
| 12 | 6 11 | mpbird | |- ( ( A C_ B /\ B C_ RR* ) -> sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) |