This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open interval of reals in terms of a ball. (Contributed by NM, 18-May-2007) (Revised by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | remet.1 | |- D = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| Assertion | ioo2bl | |- ( ( A e. RR /\ B e. RR ) -> ( A (,) B ) = ( ( ( A + B ) / 2 ) ( ball ` D ) ( ( B - A ) / 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | remet.1 | |- D = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 2 | readdcl | |- ( ( B e. RR /\ A e. RR ) -> ( B + A ) e. RR ) |
|
| 3 | 2 | ancoms | |- ( ( A e. RR /\ B e. RR ) -> ( B + A ) e. RR ) |
| 4 | 3 | rehalfcld | |- ( ( A e. RR /\ B e. RR ) -> ( ( B + A ) / 2 ) e. RR ) |
| 5 | resubcl | |- ( ( B e. RR /\ A e. RR ) -> ( B - A ) e. RR ) |
|
| 6 | 5 | ancoms | |- ( ( A e. RR /\ B e. RR ) -> ( B - A ) e. RR ) |
| 7 | 6 | rehalfcld | |- ( ( A e. RR /\ B e. RR ) -> ( ( B - A ) / 2 ) e. RR ) |
| 8 | 1 | bl2ioo | |- ( ( ( ( B + A ) / 2 ) e. RR /\ ( ( B - A ) / 2 ) e. RR ) -> ( ( ( B + A ) / 2 ) ( ball ` D ) ( ( B - A ) / 2 ) ) = ( ( ( ( B + A ) / 2 ) - ( ( B - A ) / 2 ) ) (,) ( ( ( B + A ) / 2 ) + ( ( B - A ) / 2 ) ) ) ) |
| 9 | 4 7 8 | syl2anc | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( B + A ) / 2 ) ( ball ` D ) ( ( B - A ) / 2 ) ) = ( ( ( ( B + A ) / 2 ) - ( ( B - A ) / 2 ) ) (,) ( ( ( B + A ) / 2 ) + ( ( B - A ) / 2 ) ) ) ) |
| 10 | recn | |- ( B e. RR -> B e. CC ) |
|
| 11 | recn | |- ( A e. RR -> A e. CC ) |
|
| 12 | addcom | |- ( ( B e. CC /\ A e. CC ) -> ( B + A ) = ( A + B ) ) |
|
| 13 | 10 11 12 | syl2anr | |- ( ( A e. RR /\ B e. RR ) -> ( B + A ) = ( A + B ) ) |
| 14 | 13 | oveq1d | |- ( ( A e. RR /\ B e. RR ) -> ( ( B + A ) / 2 ) = ( ( A + B ) / 2 ) ) |
| 15 | 14 | oveq1d | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( B + A ) / 2 ) ( ball ` D ) ( ( B - A ) / 2 ) ) = ( ( ( A + B ) / 2 ) ( ball ` D ) ( ( B - A ) / 2 ) ) ) |
| 16 | halfaddsub | |- ( ( B e. CC /\ A e. CC ) -> ( ( ( ( B + A ) / 2 ) + ( ( B - A ) / 2 ) ) = B /\ ( ( ( B + A ) / 2 ) - ( ( B - A ) / 2 ) ) = A ) ) |
|
| 17 | 10 11 16 | syl2anr | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( B + A ) / 2 ) + ( ( B - A ) / 2 ) ) = B /\ ( ( ( B + A ) / 2 ) - ( ( B - A ) / 2 ) ) = A ) ) |
| 18 | 17 | simprd | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( B + A ) / 2 ) - ( ( B - A ) / 2 ) ) = A ) |
| 19 | 17 | simpld | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( B + A ) / 2 ) + ( ( B - A ) / 2 ) ) = B ) |
| 20 | 18 19 | oveq12d | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( ( B + A ) / 2 ) - ( ( B - A ) / 2 ) ) (,) ( ( ( B + A ) / 2 ) + ( ( B - A ) / 2 ) ) ) = ( A (,) B ) ) |
| 21 | 9 15 20 | 3eqtr3rd | |- ( ( A e. RR /\ B e. RR ) -> ( A (,) B ) = ( ( ( A + B ) / 2 ) ( ball ` D ) ( ( B - A ) / 2 ) ) ) |