This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open interval of reals in terms of a ball. (Contributed by Mario Carneiro, 14-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | remet.1 | |- D = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| Assertion | ioo2blex | |- ( ( A e. RR /\ B e. RR ) -> ( A (,) B ) e. ran ( ball ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | remet.1 | |- D = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 2 | 1 | ioo2bl | |- ( ( A e. RR /\ B e. RR ) -> ( A (,) B ) = ( ( ( A + B ) / 2 ) ( ball ` D ) ( ( B - A ) / 2 ) ) ) |
| 3 | 1 | rexmet | |- D e. ( *Met ` RR ) |
| 4 | readdcl | |- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
|
| 5 | 4 | rehalfcld | |- ( ( A e. RR /\ B e. RR ) -> ( ( A + B ) / 2 ) e. RR ) |
| 6 | resubcl | |- ( ( B e. RR /\ A e. RR ) -> ( B - A ) e. RR ) |
|
| 7 | 6 | ancoms | |- ( ( A e. RR /\ B e. RR ) -> ( B - A ) e. RR ) |
| 8 | 7 | rehalfcld | |- ( ( A e. RR /\ B e. RR ) -> ( ( B - A ) / 2 ) e. RR ) |
| 9 | 8 | rexrd | |- ( ( A e. RR /\ B e. RR ) -> ( ( B - A ) / 2 ) e. RR* ) |
| 10 | blelrn | |- ( ( D e. ( *Met ` RR ) /\ ( ( A + B ) / 2 ) e. RR /\ ( ( B - A ) / 2 ) e. RR* ) -> ( ( ( A + B ) / 2 ) ( ball ` D ) ( ( B - A ) / 2 ) ) e. ran ( ball ` D ) ) |
|
| 11 | 3 5 9 10 | mp3an2i | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + B ) / 2 ) ( ball ` D ) ( ( B - A ) / 2 ) ) e. ran ( ball ` D ) ) |
| 12 | 2 11 | eqeltrd | |- ( ( A e. RR /\ B e. RR ) -> ( A (,) B ) e. ran ( ball ` D ) ) |