This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative function on a module is linear. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | invlmhm.b | |- I = ( invg ` M ) |
|
| Assertion | invlmhm | |- ( M e. LMod -> I e. ( M LMHom M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invlmhm.b | |- I = ( invg ` M ) |
|
| 2 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 3 | eqid | |- ( .s ` M ) = ( .s ` M ) |
|
| 4 | eqid | |- ( Scalar ` M ) = ( Scalar ` M ) |
|
| 5 | eqid | |- ( Base ` ( Scalar ` M ) ) = ( Base ` ( Scalar ` M ) ) |
|
| 6 | id | |- ( M e. LMod -> M e. LMod ) |
|
| 7 | eqidd | |- ( M e. LMod -> ( Scalar ` M ) = ( Scalar ` M ) ) |
|
| 8 | lmodabl | |- ( M e. LMod -> M e. Abel ) |
|
| 9 | 2 1 | invghm | |- ( M e. Abel <-> I e. ( M GrpHom M ) ) |
| 10 | 8 9 | sylib | |- ( M e. LMod -> I e. ( M GrpHom M ) ) |
| 11 | 2 4 3 1 5 | lmodvsinv2 | |- ( ( M e. LMod /\ x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) -> ( x ( .s ` M ) ( I ` y ) ) = ( I ` ( x ( .s ` M ) y ) ) ) |
| 12 | 11 | eqcomd | |- ( ( M e. LMod /\ x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) -> ( I ` ( x ( .s ` M ) y ) ) = ( x ( .s ` M ) ( I ` y ) ) ) |
| 13 | 12 | 3expb | |- ( ( M e. LMod /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( I ` ( x ( .s ` M ) y ) ) = ( x ( .s ` M ) ( I ` y ) ) ) |
| 14 | 2 3 3 4 4 5 6 6 7 10 13 | islmhmd | |- ( M e. LMod -> I e. ( M LMHom M ) ) |