This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse relation is symmetric. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | |- B = ( Base ` C ) |
|
| invfval.n | |- N = ( Inv ` C ) |
||
| invfval.c | |- ( ph -> C e. Cat ) |
||
| invss.x | |- ( ph -> X e. B ) |
||
| invss.y | |- ( ph -> Y e. B ) |
||
| Assertion | invsym | |- ( ph -> ( F ( X N Y ) G <-> G ( Y N X ) F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | |- B = ( Base ` C ) |
|
| 2 | invfval.n | |- N = ( Inv ` C ) |
|
| 3 | invfval.c | |- ( ph -> C e. Cat ) |
|
| 4 | invss.x | |- ( ph -> X e. B ) |
|
| 5 | invss.y | |- ( ph -> Y e. B ) |
|
| 6 | eqid | |- ( Sect ` C ) = ( Sect ` C ) |
|
| 7 | 1 2 3 4 5 6 | isinv | |- ( ph -> ( F ( X N Y ) G <-> ( F ( X ( Sect ` C ) Y ) G /\ G ( Y ( Sect ` C ) X ) F ) ) ) |
| 8 | 7 | biancomd | |- ( ph -> ( F ( X N Y ) G <-> ( G ( Y ( Sect ` C ) X ) F /\ F ( X ( Sect ` C ) Y ) G ) ) ) |
| 9 | 1 2 3 5 4 6 | isinv | |- ( ph -> ( G ( Y N X ) F <-> ( G ( Y ( Sect ` C ) X ) F /\ F ( X ( Sect ` C ) Y ) G ) ) ) |
| 10 | 8 9 | bitr4d | |- ( ph -> ( F ( X N Y ) G <-> G ( Y N X ) F ) ) |