This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infinimum of a set of extended reals containing minus infinity is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018) (Revised by AV, 28-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infxrmnf | |- ( ( A C_ RR* /\ -oo e. A ) -> inf ( A , RR* , < ) = -oo ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infxrlb | |- ( ( A C_ RR* /\ -oo e. A ) -> inf ( A , RR* , < ) <_ -oo ) |
|
| 2 | infxrcl | |- ( A C_ RR* -> inf ( A , RR* , < ) e. RR* ) |
|
| 3 | 2 | adantr | |- ( ( A C_ RR* /\ -oo e. A ) -> inf ( A , RR* , < ) e. RR* ) |
| 4 | xlemnf | |- ( inf ( A , RR* , < ) e. RR* -> ( inf ( A , RR* , < ) <_ -oo <-> inf ( A , RR* , < ) = -oo ) ) |
|
| 5 | 3 4 | syl | |- ( ( A C_ RR* /\ -oo e. A ) -> ( inf ( A , RR* , < ) <_ -oo <-> inf ( A , RR* , < ) = -oo ) ) |
| 6 | 1 5 | mpbid | |- ( ( A C_ RR* /\ -oo e. A ) -> inf ( A , RR* , < ) = -oo ) |