This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infimum of the positive reals is 0. (Contributed by AV, 5-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infmrp1 | |- inf ( RR+ , RR , < ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpltrp | |- A. x e. RR+ E. y e. RR+ y < x |
|
| 2 | ltso | |- < Or RR |
|
| 3 | 2 | a1i | |- ( A. x e. RR+ E. y e. RR+ y < x -> < Or RR ) |
| 4 | 0red | |- ( A. x e. RR+ E. y e. RR+ y < x -> 0 e. RR ) |
|
| 5 | 0red | |- ( z e. RR+ -> 0 e. RR ) |
|
| 6 | rpre | |- ( z e. RR+ -> z e. RR ) |
|
| 7 | rpge0 | |- ( z e. RR+ -> 0 <_ z ) |
|
| 8 | 5 6 7 | lensymd | |- ( z e. RR+ -> -. z < 0 ) |
| 9 | 8 | adantl | |- ( ( A. x e. RR+ E. y e. RR+ y < x /\ z e. RR+ ) -> -. z < 0 ) |
| 10 | elrp | |- ( z e. RR+ <-> ( z e. RR /\ 0 < z ) ) |
|
| 11 | breq2 | |- ( x = z -> ( y < x <-> y < z ) ) |
|
| 12 | 11 | rexbidv | |- ( x = z -> ( E. y e. RR+ y < x <-> E. y e. RR+ y < z ) ) |
| 13 | 12 | rspcv | |- ( z e. RR+ -> ( A. x e. RR+ E. y e. RR+ y < x -> E. y e. RR+ y < z ) ) |
| 14 | 10 13 | sylbir | |- ( ( z e. RR /\ 0 < z ) -> ( A. x e. RR+ E. y e. RR+ y < x -> E. y e. RR+ y < z ) ) |
| 15 | 14 | impcom | |- ( ( A. x e. RR+ E. y e. RR+ y < x /\ ( z e. RR /\ 0 < z ) ) -> E. y e. RR+ y < z ) |
| 16 | 3 4 9 15 | eqinfd | |- ( A. x e. RR+ E. y e. RR+ y < x -> inf ( RR+ , RR , < ) = 0 ) |
| 17 | 1 16 | ax-mp | |- inf ( RR+ , RR , < ) = 0 |