This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for an element to be equal to the infimum. (Contributed by AV, 3-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infexd.1 | |- ( ph -> R Or A ) |
|
| eqinfd.2 | |- ( ph -> C e. A ) |
||
| eqinfd.3 | |- ( ( ph /\ y e. B ) -> -. y R C ) |
||
| eqinfd.4 | |- ( ( ph /\ ( y e. A /\ C R y ) ) -> E. z e. B z R y ) |
||
| Assertion | eqinfd | |- ( ph -> inf ( B , A , R ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infexd.1 | |- ( ph -> R Or A ) |
|
| 2 | eqinfd.2 | |- ( ph -> C e. A ) |
|
| 3 | eqinfd.3 | |- ( ( ph /\ y e. B ) -> -. y R C ) |
|
| 4 | eqinfd.4 | |- ( ( ph /\ ( y e. A /\ C R y ) ) -> E. z e. B z R y ) |
|
| 5 | 3 | ralrimiva | |- ( ph -> A. y e. B -. y R C ) |
| 6 | 4 | expr | |- ( ( ph /\ y e. A ) -> ( C R y -> E. z e. B z R y ) ) |
| 7 | 6 | ralrimiva | |- ( ph -> A. y e. A ( C R y -> E. z e. B z R y ) ) |
| 8 | 1 | eqinf | |- ( ph -> ( ( C e. A /\ A. y e. B -. y R C /\ A. y e. A ( C R y -> E. z e. B z R y ) ) -> inf ( B , A , R ) = C ) ) |
| 9 | 2 5 7 8 | mp3and | |- ( ph -> inf ( B , A , R ) = C ) |