This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite numerable set is equinumerous to an infinite initial ordinal. (Contributed by Jeff Hankins, 23-Oct-2009) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infenaleph | |- ( ( A e. dom card /\ _om ~<_ A ) -> E. x e. ran aleph x ~~ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardidm | |- ( card ` ( card ` A ) ) = ( card ` A ) |
|
| 2 | cardom | |- ( card ` _om ) = _om |
|
| 3 | simpr | |- ( ( A e. dom card /\ _om ~<_ A ) -> _om ~<_ A ) |
|
| 4 | omelon | |- _om e. On |
|
| 5 | onenon | |- ( _om e. On -> _om e. dom card ) |
|
| 6 | 4 5 | ax-mp | |- _om e. dom card |
| 7 | simpl | |- ( ( A e. dom card /\ _om ~<_ A ) -> A e. dom card ) |
|
| 8 | carddom2 | |- ( ( _om e. dom card /\ A e. dom card ) -> ( ( card ` _om ) C_ ( card ` A ) <-> _om ~<_ A ) ) |
|
| 9 | 6 7 8 | sylancr | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( ( card ` _om ) C_ ( card ` A ) <-> _om ~<_ A ) ) |
| 10 | 3 9 | mpbird | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( card ` _om ) C_ ( card ` A ) ) |
| 11 | 2 10 | eqsstrrid | |- ( ( A e. dom card /\ _om ~<_ A ) -> _om C_ ( card ` A ) ) |
| 12 | cardalephex | |- ( _om C_ ( card ` A ) -> ( ( card ` ( card ` A ) ) = ( card ` A ) <-> E. x e. On ( card ` A ) = ( aleph ` x ) ) ) |
|
| 13 | 11 12 | syl | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( ( card ` ( card ` A ) ) = ( card ` A ) <-> E. x e. On ( card ` A ) = ( aleph ` x ) ) ) |
| 14 | 1 13 | mpbii | |- ( ( A e. dom card /\ _om ~<_ A ) -> E. x e. On ( card ` A ) = ( aleph ` x ) ) |
| 15 | eqcom | |- ( ( card ` A ) = ( aleph ` x ) <-> ( aleph ` x ) = ( card ` A ) ) |
|
| 16 | 15 | rexbii | |- ( E. x e. On ( card ` A ) = ( aleph ` x ) <-> E. x e. On ( aleph ` x ) = ( card ` A ) ) |
| 17 | 14 16 | sylib | |- ( ( A e. dom card /\ _om ~<_ A ) -> E. x e. On ( aleph ` x ) = ( card ` A ) ) |
| 18 | alephfnon | |- aleph Fn On |
|
| 19 | fvelrnb | |- ( aleph Fn On -> ( ( card ` A ) e. ran aleph <-> E. x e. On ( aleph ` x ) = ( card ` A ) ) ) |
|
| 20 | 18 19 | ax-mp | |- ( ( card ` A ) e. ran aleph <-> E. x e. On ( aleph ` x ) = ( card ` A ) ) |
| 21 | 17 20 | sylibr | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( card ` A ) e. ran aleph ) |
| 22 | cardid2 | |- ( A e. dom card -> ( card ` A ) ~~ A ) |
|
| 23 | 22 | adantr | |- ( ( A e. dom card /\ _om ~<_ A ) -> ( card ` A ) ~~ A ) |
| 24 | breq1 | |- ( x = ( card ` A ) -> ( x ~~ A <-> ( card ` A ) ~~ A ) ) |
|
| 25 | 24 | rspcev | |- ( ( ( card ` A ) e. ran aleph /\ ( card ` A ) ~~ A ) -> E. x e. ran aleph x ~~ A ) |
| 26 | 21 23 25 | syl2anc | |- ( ( A e. dom card /\ _om ~<_ A ) -> E. x e. ran aleph x ~~ A ) |