This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Auxiliary theorem for applications of supcvg . (Contributed by NM, 4-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infcvg.1 | |- R = { x | E. y e. X x = -u A } |
|
| infcvg.2 | |- ( y e. X -> A e. RR ) |
||
| infcvg.3 | |- Z e. X |
||
| infcvg.4 | |- E. z e. RR A. w e. R w <_ z |
||
| infcvg.5a | |- S = -u sup ( R , RR , < ) |
||
| infcvg.13 | |- ( y = C -> A = B ) |
||
| Assertion | infcvgaux2i | |- ( C e. X -> S <_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infcvg.1 | |- R = { x | E. y e. X x = -u A } |
|
| 2 | infcvg.2 | |- ( y e. X -> A e. RR ) |
|
| 3 | infcvg.3 | |- Z e. X |
|
| 4 | infcvg.4 | |- E. z e. RR A. w e. R w <_ z |
|
| 5 | infcvg.5a | |- S = -u sup ( R , RR , < ) |
|
| 6 | infcvg.13 | |- ( y = C -> A = B ) |
|
| 7 | eqid | |- -u B = -u B |
|
| 8 | 6 | negeqd | |- ( y = C -> -u A = -u B ) |
| 9 | 8 | rspceeqv | |- ( ( C e. X /\ -u B = -u B ) -> E. y e. X -u B = -u A ) |
| 10 | 7 9 | mpan2 | |- ( C e. X -> E. y e. X -u B = -u A ) |
| 11 | negex | |- -u B e. _V |
|
| 12 | eqeq1 | |- ( x = -u B -> ( x = -u A <-> -u B = -u A ) ) |
|
| 13 | 12 | rexbidv | |- ( x = -u B -> ( E. y e. X x = -u A <-> E. y e. X -u B = -u A ) ) |
| 14 | 11 13 1 | elab2 | |- ( -u B e. R <-> E. y e. X -u B = -u A ) |
| 15 | 10 14 | sylibr | |- ( C e. X -> -u B e. R ) |
| 16 | 1 2 3 4 | infcvgaux1i | |- ( R C_ RR /\ R =/= (/) /\ E. z e. RR A. w e. R w <_ z ) |
| 17 | 16 | suprubii | |- ( -u B e. R -> -u B <_ sup ( R , RR , < ) ) |
| 18 | 15 17 | syl | |- ( C e. X -> -u B <_ sup ( R , RR , < ) ) |
| 19 | 6 | eleq1d | |- ( y = C -> ( A e. RR <-> B e. RR ) ) |
| 20 | 19 2 | vtoclga | |- ( C e. X -> B e. RR ) |
| 21 | 16 | suprclii | |- sup ( R , RR , < ) e. RR |
| 22 | lenegcon1 | |- ( ( B e. RR /\ sup ( R , RR , < ) e. RR ) -> ( -u B <_ sup ( R , RR , < ) <-> -u sup ( R , RR , < ) <_ B ) ) |
|
| 23 | 20 21 22 | sylancl | |- ( C e. X -> ( -u B <_ sup ( R , RR , < ) <-> -u sup ( R , RR , < ) <_ B ) ) |
| 24 | 18 23 | mpbid | |- ( C e. X -> -u sup ( R , RR , < ) <_ B ) |
| 25 | 5 24 | eqbrtrid | |- ( C e. X -> S <_ B ) |