This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An indiscrete category in which all hom-sets have exactly one morphism is a thin category. Constructed here is an indiscrete category where all morphisms are (/) . This is a special case of prsthinc , where .<_ = ( B X. B ) . This theorem also implies a functor from the category of sets to the category of small categories. (Contributed by Zhi Wang, 17-Sep-2024) (Proof shortened by Zhi Wang, 19-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | indthinc.b | |- ( ph -> B = ( Base ` C ) ) |
|
| indthinc.h | |- ( ph -> ( ( B X. B ) X. { 1o } ) = ( Hom ` C ) ) |
||
| indthinc.o | |- ( ph -> (/) = ( comp ` C ) ) |
||
| indthinc.c | |- ( ph -> C e. V ) |
||
| Assertion | indthinc | |- ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> (/) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indthinc.b | |- ( ph -> B = ( Base ` C ) ) |
|
| 2 | indthinc.h | |- ( ph -> ( ( B X. B ) X. { 1o } ) = ( Hom ` C ) ) |
|
| 3 | indthinc.o | |- ( ph -> (/) = ( comp ` C ) ) |
|
| 4 | indthinc.c | |- ( ph -> C e. V ) |
|
| 5 | eqidd | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( B X. B ) X. { 1o } ) = ( ( B X. B ) X. { 1o } ) ) |
|
| 6 | 5 | f1omo | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> E* f f e. ( ( ( B X. B ) X. { 1o } ) ` <. x , y >. ) ) |
| 7 | df-ov | |- ( x ( ( B X. B ) X. { 1o } ) y ) = ( ( ( B X. B ) X. { 1o } ) ` <. x , y >. ) |
|
| 8 | 7 | eleq2i | |- ( f e. ( x ( ( B X. B ) X. { 1o } ) y ) <-> f e. ( ( ( B X. B ) X. { 1o } ) ` <. x , y >. ) ) |
| 9 | 8 | mobii | |- ( E* f f e. ( x ( ( B X. B ) X. { 1o } ) y ) <-> E* f f e. ( ( ( B X. B ) X. { 1o } ) ` <. x , y >. ) ) |
| 10 | 6 9 | sylibr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> E* f f e. ( x ( ( B X. B ) X. { 1o } ) y ) ) |
| 11 | biid | |- ( ( ( x e. B /\ y e. B /\ z e. B ) /\ ( f e. ( x ( ( B X. B ) X. { 1o } ) y ) /\ g e. ( y ( ( B X. B ) X. { 1o } ) z ) ) ) <-> ( ( x e. B /\ y e. B /\ z e. B ) /\ ( f e. ( x ( ( B X. B ) X. { 1o } ) y ) /\ g e. ( y ( ( B X. B ) X. { 1o } ) z ) ) ) ) |
|
| 12 | id | |- ( y e. B -> y e. B ) |
|
| 13 | 12 | ancli | |- ( y e. B -> ( y e. B /\ y e. B ) ) |
| 14 | 1oex | |- 1o e. _V |
|
| 15 | 14 | ovconst2 | |- ( ( y e. B /\ y e. B ) -> ( y ( ( B X. B ) X. { 1o } ) y ) = 1o ) |
| 16 | 0lt1o | |- (/) e. 1o |
|
| 17 | eleq2 | |- ( ( y ( ( B X. B ) X. { 1o } ) y ) = 1o -> ( (/) e. ( y ( ( B X. B ) X. { 1o } ) y ) <-> (/) e. 1o ) ) |
|
| 18 | 16 17 | mpbiri | |- ( ( y ( ( B X. B ) X. { 1o } ) y ) = 1o -> (/) e. ( y ( ( B X. B ) X. { 1o } ) y ) ) |
| 19 | 13 15 18 | 3syl | |- ( y e. B -> (/) e. ( y ( ( B X. B ) X. { 1o } ) y ) ) |
| 20 | 19 | adantl | |- ( ( ph /\ y e. B ) -> (/) e. ( y ( ( B X. B ) X. { 1o } ) y ) ) |
| 21 | 16 | a1i | |- ( ( x e. B /\ y e. B /\ z e. B ) -> (/) e. 1o ) |
| 22 | 0ov | |- ( <. x , y >. (/) z ) = (/) |
|
| 23 | 22 | oveqi | |- ( g ( <. x , y >. (/) z ) f ) = ( g (/) f ) |
| 24 | 0ov | |- ( g (/) f ) = (/) |
|
| 25 | 23 24 | eqtri | |- ( g ( <. x , y >. (/) z ) f ) = (/) |
| 26 | 25 | a1i | |- ( ( x e. B /\ y e. B /\ z e. B ) -> ( g ( <. x , y >. (/) z ) f ) = (/) ) |
| 27 | 14 | ovconst2 | |- ( ( x e. B /\ z e. B ) -> ( x ( ( B X. B ) X. { 1o } ) z ) = 1o ) |
| 28 | 27 | 3adant2 | |- ( ( x e. B /\ y e. B /\ z e. B ) -> ( x ( ( B X. B ) X. { 1o } ) z ) = 1o ) |
| 29 | 21 26 28 | 3eltr4d | |- ( ( x e. B /\ y e. B /\ z e. B ) -> ( g ( <. x , y >. (/) z ) f ) e. ( x ( ( B X. B ) X. { 1o } ) z ) ) |
| 30 | 29 | ad2antrl | |- ( ( ph /\ ( ( x e. B /\ y e. B /\ z e. B ) /\ ( f e. ( x ( ( B X. B ) X. { 1o } ) y ) /\ g e. ( y ( ( B X. B ) X. { 1o } ) z ) ) ) ) -> ( g ( <. x , y >. (/) z ) f ) e. ( x ( ( B X. B ) X. { 1o } ) z ) ) |
| 31 | 1 2 10 3 4 11 20 30 | isthincd2 | |- ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> (/) ) ) ) |